allotetraploid species
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna V. Klepikova ◽  
Elina D. Shnayder ◽  
Artem S. Kasianov ◽  
Margarita V. Remizowa ◽  
Dmitry D. Sokoloff ◽  
...  

Naturally occurring mutants whose phenotype recapitulates the changes that distinguish closely related species are of special interest from the evolutionary point of view. They can give a key about the genetic control of the changes that led to speciation. In this study, we described lepidium-like (lel), a naturally occurring variety of an allotetraploid species Capsella bursa-pastoris that is characterized by the typical loss of all four petals. In some cases, one or two basal flowers in the raceme had one or two small petals. The number and structure of other floral organs are not affected. Our study of flower development in the mutant showed that once initiated, petals either cease further development and cannot be traced in anthetic flowers or sometimes develop to various degrees. lel plants showed an earlier beginning of floral organ initiation and delayed petal initiation compared to the wild-type plants. lel phenotype has a wide geographical distribution, being found at the northern extremity of the species range as well as in the central part. The genetic analysis of inheritance demonstrated that lel phenotype is controlled by two independent loci. While the flower in the family Cruciferae generally has a very stable structure (i.e., four sepals, four petals, six stamens, and two carpels), several deviations from this ground plan are known, in particular in the genus Lepidium, C. bursa-pastoris is an emerging model for the study of polyploidy (which is also very widespread in Cruciferae); the identification and characterization of the apetalous mutant lays a foundation for further research of morphological evolution in polyploids.


2021 ◽  
Vol 53 (9) ◽  
pp. 1392-1402
Author(s):  
Lei Kang ◽  
Lunwen Qian ◽  
Ming Zheng ◽  
Liyang Chen ◽  
Hao Chen ◽  
...  

AbstractDespite early domestication around 3000 BC, the evolutionary history of the ancient allotetraploid species Brassica juncea (L.) Czern & Coss remains uncertain. Here, we report a chromosome-scale de novo assembly of a yellow-seeded B. juncea genome by integrating long-read and short-read sequencing, optical mapping and Hi-C technologies. Nuclear and organelle phylogenies of 480 accessions worldwide supported that B. juncea is most likely a single origin in West Asia, 8,000–14,000 years ago, via natural interspecific hybridization. Subsequently, new crop types evolved through spontaneous gene mutations and introgressions along three independent routes of eastward expansion. Selective sweeps, genome-wide trait associations and tissue-specific RNA-sequencing analysis shed light on the domestication history of flowering time and seed weight, and on human selection for morphological diversification in this versatile species. Our data provide a comprehensive insight into the origin and domestication and a foundation for genomics-based breeding of B. juncea.


Heredity ◽  
2021 ◽  
Author(s):  
Jörg A. Bachmann ◽  
Andrew Tedder ◽  
Marco Fracassetti ◽  
Kim A. Steige ◽  
Clément Lafon-Placette ◽  
...  

AbstractPolyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Duo Chen ◽  
Peng-Cheng Yan ◽  
Yan-Ping Guo

Abstract Background Polyploid species often originate recurrently. While this is well known, there is little information on the extent to which distinct allotetraploid species formed from the same parent species differ in gene expression. The tetraploid yarrow species Achillea alpina and A. wilsoniana arose independently from allopolyploidization between diploid A. acuminata and A. asiatica. The genetics and geography of these origins are clear from previous studies, providing a solid basis for comparing gene expression patterns of sibling allopolyploid species that arose independently. Results We conducted comparative RNA-sequencing analyses on the two Achillea tetraploid species and their diploid progenitors to evaluate: 1) species-specific gene expression and coexpression across the four species; 2) patterns of inheritance of parental gene expression; 3) parental contributions to gene expression in the allotetraploid species, and homeolog expression bias. Diploid A. asiatica showed a higher contribution than diploid A. acuminata to the transcriptomes of both tetraploids and also greater homeolog bias in these transcriptomes, possibly reflecting a maternal effect. Comparing expressed genes in the two allotetraploids, we found expression of ca. 30% genes were species-specific in each, which were most enriched for GO terms pertaining to “defense response”. Despite species-specific and differentially expressed genes between the two allotetraploids, they display similar transcriptome changes in comparison to their diploid progenitors. Conclusion Two independently originated Achillea allotetraploid species exhibited difference in gene expression, some of which must be related to differential adaptation during their post-speciation evolution. On the other hand, they showed similar expression profiles when compared to their progenitors. This similarity might be expected when pairs of merged diploid genomes in tetraploids are similar, as is the case in these two particular allotetraploids.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Hua Yang ◽  
Philipp E. Bayer ◽  
Soodeh Tirnaz ◽  
David Edwards ◽  
Jacqueline Batley

Brassica juncea, an allotetraploid species, is an important germplasm resource for canola improvement, due to its many beneficial agronomic traits, such as heat and drought tolerance and blackleg resistance. Receptor-like kinase (RLK) and receptor-like protein (RLP) genes are two types of resistance gene analogues (RGA) that play important roles in plant innate immunity, stress response and various development processes. In this study, genome wide analysis of RLKs and RLPs is performed in B. juncea. In total, 493 RLKs (LysM-RLKs and LRR-RLKs) and 228 RLPs (LysM-RLPs and LRR-RLPs) are identified in the genome of B. juncea, using RGAugury. Only 13.54% RLKs and 11.79% RLPs are observed to be grouped within gene clusters. The majority of RLKs (90.17%) and RLPs (52.83%) are identified as duplicates, indicating that gene duplications significantly contribute to the expansion of RLK and RLP families. Comparative analysis between B. juncea and its progenitor species, B. rapa and B. nigra, indicate that 83.62% RLKs and 41.98% RLPs are conserved in B. juncea, and RLPs are likely to have a faster evolution than RLKs. This study provides a valuable resource for the identification and characterisation of candidate RLK and RLP genes.


Phytotaxa ◽  
2020 ◽  
Vol 477 (2) ◽  
pp. 229-242
Author(s):  
ATSUSHI EBIHARA ◽  
NARUMI NAKATO ◽  
TETSUO OHI-TOMA ◽  
KUNIO IWATSUKI

A broad-leaved form of Thelypteris nipponica, usually called “var. borealis”, was identified as an allotetraploid originated from hybridization between two diploid species T. nipponica and T. musashiensis based on chromosome number, plastid rbcL sequence and nuclear gapCp “short” sequence. We found that the original material of Thelypteris nipponica var. borealis morphologically corresponds not to the plant widely known as “var. borealis” but to diploid T. nipponica. Therefore, we described the tetraploid distributed in Japan and China as a new species, Thelypteris sylva-nipponica.


Author(s):  
Hui Wu ◽  
Qiong Yu ◽  
Jin-Hua Ran ◽  
Xiao-Quan Wang

Abstract The evolutionary dynamics of polyploid genomes and consequences of polyploidy have been studied extensively in angiosperms but very rarely in gymnosperms. The gymnospermous genus Ephedra is characterized by a high frequency of polyploidy, and thus provides an ideal system to investigate the evolutionary mode of allopolyploid genomes and test whether subgenome dominance has occurred in gymnosperms. Here we sequenced transcriptomes of two allotetraploid species of Ephedra and their putative diploid progenitors, identified expressed homeologs, and analyzed alternative splicing and homeolog expression based on PacBio Iso-Seq and Illumina RNA-seq data. We found that the two subgenomes of the allotetraploids had similar numbers of expressed homeologs, similar percentages of homeologs with dominant expression, and approximately equal numbers of isoforms with alternative splicing, showing an unbiased subgenome evolution as in a few polyploid angiosperms, with a divergence of the two subgenomes at approximately 8 Mya. In addition, the nuclear DNA content of the allotetraploid species is almost equal to the sum of two putative progenitors, suggesting limited genome restructuring after allotetraploid speciation. The allopolyploid species of Ephedra might have undergone slow diploidization, and the unbiased subgenome evolution implies that the formation of large genomes in gymnosperms could be attributed to even and slow fractionation following polyploidization.


2020 ◽  
Vol 45 ◽  
pp. 203-205
Author(s):  
Llorenç Sáez Goñalons

Stellaria ruderalis M. Lepší, P. Lepší, Z. Kaplan & P. Koutecký, a recently described allotetraploid species belonging to the S. media group, is reported here as new for the Iberian Peninsula (Barcelona and Gerona provinces) and the Balearic Islands (Mallorca). This species could be widely overlooked due to its overall similarity to S. media, and it is probably more widespread than currently known.


2020 ◽  
Author(s):  
Jiangwei Qiao ◽  
Xiaojun Zhang ◽  
Biyun Chen ◽  
Fei Huang ◽  
Kun Xu ◽  
...  

Abstract Background: The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of B. napus and certain detailed interspecific relationships within Brassica genus remains undetermined and somewhere confused. In the current high-throughput sequencing era, a systemic comparative genomic study based on a large population is necessary and would be crucial to resolve these questions. Results: The chloroplast DNA and mitochondrial DNA were synchronously resequenced in a selected set of Brassica materials, which contain 72 accessions and maximally integrated the known Brassica species. The Brassica genomewide cpDNA and mtDNA variations have been identified. Detailed phylogenetic relationships inside and around Brassica genus have been delineated by the cpDNA- and mtDNA- variation derived phylogenies. Different from B. juncea and B. carinata, the natural B. napus contains three major cytoplasmic haplotypes: the cam-type which directly inherited from B. rapa, polima-type which is close to cam-type as a sister, and the mysterious but predominant nap-type. Certain sparse C-genome wild species might have primarily contributed the nap-type cytoplasm and the corresponding C subgenome to B. napus, implied by their con-clustering in both phylogenies. The strictly concurrent inheritance of mtDNA and cpDNA were dramatically disturbed in the B. napus cytoplasmic male sterile lines (e.g., mori and nsa). The genera Raphanus, Sinapis, Eruca, Moricandia show a strong parallel evolutional relationships with Brassica. Conclusions: The overall variation data and elaborated phylogenetic relationships provide further insights into genetic understanding of Brassica, which can substantially facilitate the development of novel Brassica germplasms.


2020 ◽  
Vol 193 (4) ◽  
pp. 546-559 ◽  
Author(s):  
Steven Dodsworth ◽  
Maarten J M Christenhusz ◽  
John G Conran ◽  
Maïté S Guignard ◽  
Sandra Knapp ◽  
...  

Abstract Nicotiana section Suaveolentes is the largest section of Nicotiana and is a monophyletic group of allotetraploid species. Most of the species are endemic to Australia, but three species occur on islands in the South Pacific as far east as French Polynesia and one species is native to Namibia. Here, we present phylogenetic results based on genome skimming, with near-complete taxon sampling and multiple accessions sampled for several species. These represent the first phylogenetic results for the section that include most recognized taxa, using wild-sourced material wherever possible. Despite known chromosome number and genome size changes in the section, there is little divergence in the ribosomal DNA operon (26S, 18.S and 5.8S plus associated spacers) and plastid genomes, with little to no taxonomic signal in plastome phylogenetic results and clear plastid-nuclear discordance. These results contrast with strong morphological differentiation (both floral and vegetative) between most of the core Australian taxa and obvious differences in ecological preferences. Together, these initial results portray Nicotiana section Suaveolentes as experiencing recent and ongoing radiation in the arid zone of Australia.


Sign in / Sign up

Export Citation Format

Share Document