amiloride analogs
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 19 (4) ◽  
pp. e48
Author(s):  
Abdullah All Jaber ◽  
Zeshan Mahmud Chowdhury ◽  
Arittra Bhattacharjee ◽  
Muntahi Mourin ◽  
Chaman Ara Keya ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics (MD) simulation for 1 μs (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.


Author(s):  
Muntahi Mourin ◽  
Arittra Bhattacharjee ◽  
Alvan Wai ◽  
Georg Hausner ◽  
Joe O'Neil ◽  
...  

Structural and mutational analysis of Vc-NhaP2 identified a putative cation binding pocket formed by antiparallel extended regions of two transmembrane segments (TMSs V/XII) along with TMS VI. Molecular Dynamics (MD) simulations suggested that the flexibility of TMS-V/XII is crucial for the intra-molecular conformational events in Vc-NhaP2. In this study, we developed some putative Vc-NhaP2 inhibitors from Amiloride analogs (AAs). Molecular docking of the modified AAs revealed promising binding. The four selected drugs potentially interacted with functionally important amino acid residues located on the cytoplasmic side of TMS VI, the extended chain region of TMS V and TMS XII and the loop region between TMSs VIIII and IX. Molecular dynamics simulations revealed that binding of the selected drugs can potentially destabilize the Vc-NhaP2 and alters the flexibility of the functionally important TMS VI. The work presents the utility of in silico approaches for the rational identification of potential targets and drugs that could target NhaP2 cation proton antiporter to control Vibrio cholerae. The goal is to identify potential drugs that can be validated in future experiments.


Author(s):  
Muntahi Mourin ◽  
Arittra Bhattacharjee ◽  
Alvan Wai ◽  
George Hausner ◽  
Joe O'Neil ◽  
...  

The genome of Vibrio cholerae contains three structural genes for the NhaP-type cation-proton antiporter paralogues, Vc-NhaP1, 2 and 3 mediating exchange of K+ and or Na+ for protons across the membrane. Based on phenotype analysis of chromosomal Vc-NhaP1, 2 and 3 triple deletion mutants we suggested that Vc-NhaP paralogues might play a role in the Acid Tolerance Response (ATR) of V. cholerae as it passes through the gastric acid barrier of the stomach. Comparison of the biochemical properties of Vc-NhaP isoforms revealed that Vc-NhaP2 is the most active among all three paralogues. Therefore, Vc-NhaP2 antiporter is a plausible therapeutic target for developing novel inhibitors targeting these ion exchangers. Our structural and mutational analysis of Vc-NhaP2 identified a putative cation binding pocket formed by antiparallel extended regions of two transmembrane segments (TMSs V/XII) along with TMS VI. Molecular Dynamics (MD) simulations suggested that the flexibility of TMS-V/XII is crucial for the intra-molecular conformational events in Vc-NhaP2. In this study, we developed some putative Vc-NhaP2 inhibitors from Amiloride analogs (AAs). Amiloride is a potent inhibitor of human Na+/H+ exchanger-1 (NHE1). Based on the pharmacokinetic properties and potential binding affinity scores we chose six AAs showing high binding affinity scores to Vc-NhaP2. In silico, the six AAs interacted with the functionally important amino acid residues located in TMSs III, IV, V, VI, VIIII and IX either from the cytoplasmic side (three AAs) or the periplasmic side (three AAs) of Vc-NhaP2. Four AAs were modified to reduce their toxicity profile compared to the original AAs. Molecular docking of the modified AAs revealed promising binding. The four selected drugs interacted with functionally important amino acid residues located on the cytoplasmic side of TMS VI, the extended chain region of TMS V and TMS XII and the loop region between TMSs VIIII and IX. Molecular dynamics simulations revealed that binding of the selected drugs destabilized the Vc-NhaP2 and altered the flexibility of functionally important TMS VI.


2016 ◽  
Vol 22 (6) ◽  
pp. 468-476 ◽  
Author(s):  
Tian-Dong Leng ◽  
Hong-Fang Si ◽  
Jun Li ◽  
Tao Yang ◽  
Mengyuan Zhu ◽  
...  
Keyword(s):  

2006 ◽  
Vol 290 (4) ◽  
pp. C952-C963 ◽  
Author(s):  
Dragos Olteanu ◽  
Bradley K. Yoder ◽  
Wen Liu ◽  
Mandy J. Croyle ◽  
Elisabeth A. Welty ◽  
...  

The Tg737° rpk autosomal recessive polycystic kidney disease (ARPKD) mouse carries a hypomorphic mutation in the Tg737 gene. Because of the absence of its protein product Polaris, the nonmotile primary monocilium central to the luminal membrane of ductal epithelia, such as the cortical collecting duct (CCD) principal cell (PC), is malformed. Although the functions of the renal monocilium remain elusive, primary monocilia or flagella on neurons act as sensory organelles. Thus we hypothesized that the PC monocilium functions as a cellular sensor. To test this hypothesis, we assessed the contribution of Polaris and cilium structure and function to renal epithelial ion transport electrophysiology. Properties of Tg737° rpk mutant CCD PC clones were compared with clones genetically rescued with wild-type Tg737 cDNA. All cells were grown as polarized cell monolayers with similarly high transepithelial resistance on permeable filter supports. Three- to fourfold elevated transepithelial voltage ( Vte) and short-circuit current ( Isc) were measured in mutant orpk monolayers vs. rescued controls. Pharmacological and cell biological examination of this enhanced electrical end point in mutant monolayers revealed that epithelial Na+ channels (ENaCs) were upregulated. Amiloride, ENaC-selective amiloride analogs (benzamil and phenamil), and protease inhibitors (aprotinin and leupeptin) attenuated heightened Vte and Isc. Higher concentrations of additional amiloride analogs (ethylisopropylamiloride and dimethylamiloride) also revealed inhibition of Vte. Cell culture requirements and manipulations were also consistent with heightened ENaC expression and function. Together, these data suggest that ENaC expression and/or function are upregulated in the luminal membrane of mutant, cilium-deficient orpk CCD PC monolayers vs. cilium-competent controls. When the genetic lesion causes loss or malformation of the monocilium, ENaC-driven Na+ hyperabsorption may explain the rapid emergence of severe hypertension in a majority of patients with ARPKD.


2004 ◽  
Vol 311 (3) ◽  
pp. 929-938 ◽  
Author(s):  
Andrew J. Hirsh ◽  
Juan R. Sabater ◽  
Andra Zamurs ◽  
Rick T. Smith ◽  
Anthony M. Paradiso ◽  
...  

2000 ◽  
Vol 391 (1-2) ◽  
pp. 11-20 ◽  
Author(s):  
Cristiano G Ponte ◽  
Rita C.E Estrela ◽  
Guilherme Suarez-Kurtz

2000 ◽  
Vol 57 (3) ◽  
pp. 436-445 ◽  
Author(s):  
Ray A. Leppik ◽  
Anita Mynett ◽  
Sebastian Lazareno ◽  
Nigel J. M. Birdsall

Sign in / Sign up

Export Citation Format

Share Document