half turn
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Alberta Parinters Makur ◽  
Bedilius Gunur ◽  
Bonefasius Rampung

Connection between mathematical content and the cultures of learnersin mathematics education should be acknowledged and explored. Thisresearch, conducted using a qualitative research approach, withethnographic methods, explored the relationship between formalmathematics especially geometric patterns and Motifs of ManggaraiEthnic Woven Fabric, known as Towe Songke in Cibal, ManggaraiRegency, a rural area in East Nusa Tenggara Indonesia. Total 3weavers of the age ranging from 20 to 40 selected based on theirweaving knowledge and communication skills. Data were obtainedthrough interviews, observations, field notes, and documentations.The research resulted in how mathematics learning on subjects such as geometry and geometry transformation was associated with the local cultural context of Manggarai. This study identified the line symmetry and the effect of geometric transformations (translations,reflections, rotation, and reflection) of several motifs in Towe Songke. Most of motifs which are found in Towe Songke forms Frieze Pattern F7 because these motifs can be seen as translation, horizontal reflection, vertical reflection and half turn rotation symmetry.


Author(s):  
I. A. Savko ◽  

The Andronovo necropolises of the northwestern foothills of Altai are located in the contact zone of steppes and mountains, which is of great interest for studying the processes of ethnocultural interaction in the era of developed bronze. All objects of the metal complex were divided into five cultural and chronological levels: transcultural objects, epoch-making, general andronovo, fedorovo and local. The most common artifacts made of metal are artifacts of the common Andronovo and Fedorovo circle: bimetal cages with bent ends; pendants in a half turn, pendants with bracelets.


2019 ◽  
Author(s):  
Noritaka Nishida ◽  
Yuta Komori ◽  
Osamu Takarada ◽  
Atsushi Watanabe ◽  
Satoko Tamura ◽  
...  

AbstractThe movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain of dynein via an a-helical coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulated MTBD either in high-affinity or low-affinity states by introducing a disulfide bond between the coiled-coils and analyzed the resulting structures by NMRand cryo-EM. In the MT-unbound state, the affinity changes of MTBD were achieved by sliding of the N-terminal α-helix by one half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, cryo-EM analysis showed that MT binding induced further sliding of the N-terminal α-helix even without the disulfide bond, which suggests the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high- and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7096 ◽  
Author(s):  
Marc H.E. de Lussanet

The contralateral organization of the forebrain and the crossing of the optic nerves in the optic chiasm represent a long-standing conundrum. According to the Axial Twist Hypothesis (ATH) the rostral head and the rest of the body are twisted with respect to each other to form a left-handed half turn. This twist is the result, mainly, of asymmetric, twisted growth in the early embryo. Evolutionary selection tends to restore bilateral symmetry. Since selective pressure will decrease as the organism approaches symmetry, we expected a small control error in the form of a small, residual right-handed twist. We found that the mouth-eyes-nose (rostral head) region shows a left-offset with respect to the ears (posterior head) by up to 0.8° (P < 0.01, Bonferroni-corrected). Moreover, this systematic aurofacial asymmetry was larger in young children (on average up to 3°) and reduced with age. Finally, we predicted and found a right-sided bias for hugging (78%) and a left-sided bias for kissing (69%). Thus, all predictions were confirmed by the data. These results are all in support of the ATH, whereas the pattern of results is not (or only partly) explained by existing alternative theories. As of the present results, the ATH is the first theory for the contralateral forebrain and the optic chiasm whose predictions have been tested empirically. We conclude that humans (and all other vertebrates) are fundamentally asymmetric, both in their anatomy and their behavior. This supports the thesis that the approximate bilateral symmetry of vertebrates is a secondary feature, despite their being bilaterians.


2019 ◽  
Author(s):  
Marc HE de Lussanet

The contralateral organization of the forebrain and the crossing of the optic nerves in the optic chiasm represent a long-standing conundrum. According to the Axial Twist Hypothesis (ATH) the rostral head and the rest of the body are twisted with respect to each other to form a left-handed half turn. This twist is the result, mainly, of asymmetric, twisted growth in the early embryo. Evolutionary selection tends to restore bilateral symmetry. Since selective pressure will decrease as the organism approaches symmetry, we expected a small control error in the form of a small, residual right-handed twist. We found that the mouth-eyes-nose (rostral head) region shows a left-offset with respect to the ears (posterior head) by up to 0.8° (P<0.01, Bonferroni-corrected). Moreover, this systematic aurofacial asymmetry was larger in young children (on average up to 3°) and reduced with age. Finally, we predicted and found a right-sided bias for hugging (78%) and a left-sided bias for kissing (69%). Thus, all predictions were confirmed by the data. These results are all in support of the ATH, whereas the pattern of results is not explained by existing alternative theories. As of the present results, the ATH is the first theory for the contralateral forebrain and the optic chiasm whose predictions have been tested empirically. We conclude that humans (and all other vertebrates) are fundamentally asymmetric, both in their anatomy and their behavior. This supports the thesis that the approximate bilateral symmetry of vertebrates is a secondary feature, despite their being bilaterians.


2019 ◽  
Author(s):  
Marc HE de Lussanet

The contralateral organization of the forebrain and the crossing of the optic nerves in the optic chiasm represent a long-standing conundrum. According to the Axial Twist Hypothesis (ATH) the rostral head and the rest of the body are twisted with respect to each other to form a left-handed half turn. This twist is the result, mainly, of asymmetric, twisted growth in the early embryo. Evolutionary selection tends to restore bilateral symmetry. Since selective pressure will decrease as the organism approaches symmetry, we expected a small control error in the form of a small, residual right-handed twist. We found that the mouth-eyes-nose (rostral head) region shows a left-offset with respect to the ears (posterior head) by up to 0.8° (P<0.01, Bonferroni-corrected). Moreover, this systematic aurofacial asymmetry was larger in young children (on average up to 3°) and reduced with age. Finally, we predicted and found a right-sided bias for hugging (78%) and a left-sided bias for kissing (69%). Thus, all predictions were confirmed by the data. These results are all in support of the ATH, whereas the pattern of results is not explained by existing alternative theories. As of the present results, the ATH is the first theory for the contralateral forebrain and the optic chiasm whose predictions have been tested empirically. We conclude that humans (and all other vertebrates) are fundamentally asymmetric, both in their anatomy and their behavior. This supports the thesis that the approximate bilateral symmetry of vertebrates is a secondary feature, despite their being bilaterians.


2019 ◽  
Vol 12 (1) ◽  
pp. 31 ◽  
Author(s):  
Thomas Fischer ◽  
Christopher Krauss ◽  
Alexander Deinert

Machine learning research has gained momentum—also in finance. Consequently, initial machine-learning-based statistical arbitrage strategies have emerged in the U.S. equities markets in the academic literature, see e.g., Takeuchi and Lee (2013); Moritz and Zimmermann (2014); Krauss et al. (2017). With our paper, we pose the question how such a statistical arbitrage approach would fare in the cryptocurrency space on minute-binned data. Specifically, we train a random forest on lagged returns of 40 cryptocurrency coins, with the objective to predict whether a coin outperforms the cross-sectional median of all 40 coins over the subsequent 120 min. We buy the coins with the top-3 predictions and short-sell the coins with the flop-3 predictions, only to reverse the positions after 120 min. During the out-of-sample period of our backtest, ranging from 18 June 2018 to 17 September 2018, and after more than 100,000 trades, we find statistically and economically significant returns of 7.1 bps per day, after transaction costs of 15 bps per half-turn. While this finding poses a challenge to the semi-strong from of market efficiency, we critically discuss it in light of limits to arbitrage, focusing on total volume constraints of the presented intraday-strategy.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 128408-128418 ◽  
Author(s):  
Siqi Li ◽  
Qingyun Min ◽  
Enguo Rong ◽  
Rui Zhang ◽  
Xiao Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document