scholarly journals Centrifuge Model Test and Numerical Analysis on Failure Behavior of a Loess – Paleosol Landslide Caused by Excavation

Author(s):  
Wenyue Che ◽  
Jin Liu ◽  
Jianbing Peng ◽  
Zhongjie Fan ◽  
Yuxia Bai ◽  
...  

Abstract Many landslides are induced by excavation activities in the loess region. In this article, a loess – paleosol slope model was built and tested under 80 g centrifugal environment. Three certain angle excavations were simulated by manipulator movement. The mini pressure sensor and PIV system were utilized to monitor experimental process respectively. It can be found that the slope from excavation to failure, is liable to form the deep and shallow two sliding surfaces. The distance perpendicular to slope surface was measured as 9.6 cm for the deeper sliding surface, and 4.2 cm for the shallower one. Both of sliding surfaces are caused by the interaction of tensile failure and shear failure, specifically presented as the tensile failure concentrating on the upper part and the shear failure on the lower part. The loess slope can be split into three zones by response of excavation unloading (i.e., the sliding zone, the influenced zone and the uninfluenced zone). The failure pattern belongs to a retrogressive type with the bulging front edge and tension cracking trailing edge. The causes of the fractures on the slope top can be divided into different sections. The fracture near the slope top is induced by tension and shear force. But the fracture away from slope top is only induced by tension. In addition, the plastic zone development distribution of simulation has a good consistency with the centrifugal model deformation zoning diagram. These results can provide guidance for excavation activities in loess – paleosol slopes.

2019 ◽  
Vol 56 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Gang Zheng ◽  
Xinyu Yang ◽  
Haizuo Zhou ◽  
Jinchun Chai

Rigid piles (e.g., concrete piles) have been widely used to improve soft clay for the rapid construction of embankments. In this study, a damage plasticity model that considers the brittle failure behavior of concrete and the frictional properties along cracks is proposed to study the progressive failure of rigid piles under an embankment load. The mechanical characteristics of piles in different locations have been analyzed. The results show that the essential failure mode for rigid piles is tensile failure, which is primarily governed by the distribution of the bending moment and the axial force within the piles. Pile rupture releases stress and causes a significant increase in the tensile stress within neighboring piles, possibly leading to the progressive failure of adjacent piles. Failure in the upper section of piles ultimately leads to the propagation of a slip surface and the global failure of the embankment. The parametric analysis indicates that increases in the pile stiffness and the embankment load result in a higher tensile stress within the piles and a change in the failure mechanism from shear failure to bending failure. In addition, a failure envelope is proposed to determine the failure mode of the piles.


1993 ◽  
Vol 333 ◽  
Author(s):  
Maury E. Morgenstein ◽  
Don L. Shettel

ABSTRACTObsidian and basaltic glass are opposite end-members of natural volcanic glass compositions. Syngenetic and diagenetic tensile failure in basaltic glass (low silica glass) is pervasive and provides abundant alteration fronts deep into the glass structure. Perlitic fracturing in obsidian (high silica glass) limits the alteration zones to an “onion skin” geometry. Borosilicate waste glass behaves similarly to the natural analog of basaltic glass (sideromelane).During geologic time, established and tensile fracture networks form glass cells (a three-dimensional reticulated pattern) where the production of new fracture surfaces increases through time by geometric progression. This suggests that borosilicate glass monoliths will eventually become rubble. Rates of reaction appear to double for every 12C° of temperature increase. Published leach rates suggest that the entire inventory of certain radionuclides may be released during the 10,000 year regulatory time period. Steam alteration prior to liquid attack combined with pervasive deep tensile failure behavior may suggest that the glass waste form is not license defensible without a metallic- and/or ceramic-type composite barrier as an overpack.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2011 ◽  
Vol 99-100 ◽  
pp. 370-374 ◽  
Author(s):  
Yue Hong Qian ◽  
Ting Ting Cheng ◽  
Xiang Ming Cao ◽  
Chun Ming Song

During excavating the problem of unloading is a dynamic one essentially. Assuming the unloading ruled by a simple function and based on the Hamilton principal, the distribution of the stress field nearby the tunnel is obtained. The characteristics of the failure nearby the tunnel are analyzed considering the shear failure and tensile failure. The results show that the main mode of the shear failure, intact and tensile failure occurs from the tunnel. The characteristic of the shear failure, intact and tensile failure are one of the likely failure modes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


2015 ◽  
Author(s):  
Robert D. Barree ◽  
Jennifer L. Miskimins

Abstract In 1898, Kirsch published equations describing the elastic stresses around a circular hole that are still used today in wellbore pressure breakdown calculations. These equations are standard instruments used in multiple areas of petroleum engineering, however, the original equations were developed strictly for vertical well settings. In today's common directional or horizontal well situations, the equations need adjusted for both deviation from the vertical plane and orientation to the maximum and minimum horizontal in-situ stress anisotropy. This paper provides the mathematical development of these modified breakdown equations, along with examples of the implications in varying strike-slip and pore pressure settings. These examples show conditions where it is not unusual for breakdown pressure gradients to exceed 1.0 psi/ft and describes why certain stages in "porpoising" horizontal wells experience extreme breakdown issues during hydraulic fracturing treatments. The paper also discusses how, in most directional situations, the wellbore will almost always fail initially in a longitudinal direction at the borehole wall, after which the far-field stresses will take over and transverse components can be developed. Tortuosity and near wellbore friction pressure can actually add to forcing the initiation of such longitudinal fractures, which can then have cascading effects on other growth parameters such as cluster-to-cluster and stage-to-stage stress shadowing. Special considerations for highly laminated anisotropic formations, where shear failure of the wellbore may precede or preclude tensile failure, are also introduced. Such failure behaviors have significant implications on near wellbore conductivity requirements and can also greatly impact well production and recovery efforts.


Sign in / Sign up

Export Citation Format

Share Document