basic igneous rock
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 4 (4) ◽  
pp. 323-333
Author(s):  
S. Mustapha ◽  
S. Suleman ◽  
S. R. Iliyasu ◽  
E. E. Udensi ◽  
Y. A. Sanusi ◽  
...  

In this research the lineaments of the Kafanchan area in North-central Nigeria were investigated in order to explore the mineralization zones of the area. Aeromagnetic data over Kafanchan and environs within the Younger Granite Province, in the North-Central Nigeria were collated and analyzed. The aeromagnetic map of the area was interpreted both qualitatively and quantitatively so as to identify the nature of the magnetic sources and the trends direction in the study area. The trend of the Total Magnetic Intensity (TMI) map is predominantly in NE-SW. The First Vertical Derivative (FVD) Lineaments Map was also correlated with LADSAT lineaments map and both maps agreed in most areas. The study area is characterized by predominant magnetic lineament trend in NE-SW direction and subordinate E-W direction. The result also shows that the most significant structural trends affecting the distribution of these magnetic anomalies in the study area is in NE-SW direction. The TMI map indicates that there are three major mineralization zones in the study area. The high magnetization contrast in the NE and SE parts of the study area correlates with the migmatite-gneiss, biotite-granites, granites and basalts which are associated with high magnetic contrasts. Also, the high magnetization contrast in the NW part of the area correlates with basalt and the biotite-granite. However, the predominant low magnetization contrast observed in the western half does not correlate with the basic igneous rock



Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 689 ◽  
Author(s):  
Yunxu Wei ◽  
Wenxiao Zhou ◽  
Zhengxiang Hu ◽  
Haiquan Li ◽  
Xianxiao Huang ◽  
...  

The origin and significance of the tonalite–trondhjemite–granodiorite (TTG) units and the familiar metabasite xenoliths they host in the Yangtze Craton, China, remain controversial, and resolving these issues is important if we are to understand the evolution of the early Yangtze Craton. We focused on biotite–tremolite schist xenoliths in the Archean TTG units of the Kongling high-grade metamorphic terrane, and U–Pb dating of their zircons yielded 207Pb/206Pb ages of ca. 3.00 Ga, which provides a minimum age for the formation of the pre-metamorphic basic igneous rock. The host TTGs and late intrusive granitic dikes yield three groups of upper intercept ages at 2.87–2.88, 2.91–2.94, and 3.07 Ga, and a concordant age at 2.94 Ga, which suggest that the Yangtze continental nucleus underwent three important metamorphic–magmatic events in the Mesoarchean at ca. 3.00, 2.94, and 2.87 Ga. The biotite–tremolite schists have high ratios of K2O/Na2O and high contents of CaO, Cr, and Ni, thus showing the characteristics of high-K calc-alkaline island-arc volcanic rocks (basalt–andesite) that form by the partial melting of subducted oceanic crust. The data also provide further proof that a Mesoarchean metamorphic basement exists in the Yangtze Plate. Derivation of the magmatic protoliths of the biotite–tremolite schist enclaves from an oceanic crust during slab subduction, and the presence of these xenoliths within the TTG suite, indicate the existence of the initiation of plate tectonics during the Mesoarchean (≤2.94 Ga).



Author(s):  
Yunxu Wei ◽  
Wenxiao Zhou ◽  
Zhengxiang Hu ◽  
Xianxiao Huang ◽  
Haiquan Li ◽  
...  

The origin and significance of the tonalite–trondhjemite–granodiorite (TTG) units and the familiar metabasite xenoliths they host in the Yangtze Craton, China, remain controversial, and resolving these issues is important if we are to understand the evolution of the early Yangtze Craton. We focused on biotite–tremolite schist xenoliths in the Archean TTG units of the Kongling high-grade metamorphic terrane, and U–Pb dating of their zircons yielded 207Pb/206Pb ages of ca. 3.00 Ga, which provides a minimum age for the formation of the pre-metamorphic basic igneous rock. The host TTGs and late intrusive granitic dikes yield three groups of upper intercept ages at 2.87–2.88, 2.91–2.94, and 3.07 Ga, and a concordant age at 2.94 Ga, which suggest that the Yangtze continental nucleus underwent three important metamorphic–magmatic events in the Mesoarchean at ca. 3.00, 2.94, and 2.87 Ga. The biotite–tremolite schists have high ratios of K2O/Na2O and high contents of CaO, Cr, and Ni, thus showing the characteristics of high-K calc-alkaline island-arc volcanic rocks (basalt–andesite) that form by the partial melting of subducted oceanic crust. The data also provide further proof that a Mesoarchean metamorphic basement exists in the Yangtze Plate. Derivation of the magmatic protoliths of the biotite–tremolite schist enclaves from an oceanic crust during slab subduction, and the presence of these xenoliths within the TTG suite, indicate the existence of the initiation of plate tectonics during the Mesoarchean (≤2.94 Ga).



Author(s):  
Wenxiao Zhou ◽  
Yunxu Wei ◽  
Zhengxiang Hu ◽  
Haiquan Li ◽  
Xianxiao Huang ◽  
...  

The origin and significance of the tonalite–trondhjemite–granodiorite (TTG) units in the Yangtze Craton, China, and the metabasite xenoliths they host, remain controversial, and resolving these issues is important if we are to understand the geodynamics of the early Yangtze Craton. We have discovered many biotite–tremolite schist xenoliths in the Archean TTG units of the Kongling high-grade metamorphic terrane, and U–Pb dating of their zircons yielded 207Pb/206Pb ages of ca. 3.00 Ga, which provides a minimum age for the formation of the pre-metamorphic basic igneous rock. The host TTGs and late intrusive granitic dikes yield three groups of upper intercept ages at 2.87–2.88, 2.91–2.94, and 3.07 Ga, and a concordant age at 2.94 Ga, which suggest that the Yangtze continental nucleus underwent three important metamorphic–magmatic events in the Mesoarchean at ca. 3.00, 2.94, and 2.87 Ga. The biotite–tremolite schists have high ratios of K2O/Na2O and high contents of CaO, Cr, and Ni, thus showing the characteristics of high-K calc-alkaline island-arc volcanic rocks (basalt–andesite) that form by the partial melting of subducted oceanic crust. The data also provide further proof that a Mesoarchean metamorphic basement exists in the Yangtze Plate. Derivation of the magmatic protoliths of the biotite–tremolite schist enclaves from an oceanic crust during slab subduction, and the presence of these xenoliths within the TTG suite, indicate the existence of a Mesoarchean granite–greenstone belt in the Kongling area. The dikes of alkali granite might also be related to this oceanic plate subduction and the initiation of plate tectonics during the Mesoarchean (≤2.94 Ga).











1998 ◽  
Vol 62 (2) ◽  
pp. 213-224 ◽  
Author(s):  
J. R. Ashworth ◽  
V. V. Reverdatto ◽  
V. YU. kolobov ◽  
V. V. Lepetyukha ◽  
V. S. Sheplev ◽  
...  

AbstrsctIn a granulite from the Kokchetav massif, a complex mineral assemblage and intricate textures have resulted from a combination of unusual rock composition and two–stage metamorphic history. The second, contact metamorphism produced mainly cordierite and anthophyllite, reflecting a bulk composition attributed to pre–metamorphic alteration of basic igneous rock. From the first, highpressure metamorphism, garnet relics persist while another mineral has been completely pseudomorphed. The garnet is partly replaced by a symplectite of three minerals: orthopyroxene vermicules in a coarser intergrowth of cordierite and calcic plagioclase. Despite variable proportions of cordierite and plagioclase, the Al:Si ratio of the symplectite is almost constant, because the proportion of orthopyroxene is smaller where the dominant aluminous mineral is cordierite (Al:Si ≈ 0.8) than where the even more aluminous plagioclase (Al:Si ≈ 0.89) is prominent. The bulk Al:Si ratio of this symplectite, approximately 0.69, is very close to that of reactant garnet (0.66), indicating that Al and Si have been retained almost completely during the local reaction, while other elements were more mobile. In the pseudomorphs, aluminous cores (with Al:Si ratios 1.61–1.93) indicate that the mineral which has been completely replaced was probably kyanite. These cores comprise plagioclase, zoisite, corundum and spinel, and are surrounded by layers of plagioclase and cordierite. Fe, Mg, and Ca have diffused to the core, through layers with low bulk concentrations of these elements, probably by grainboundary diffusion in the solid state.



1983 ◽  
Vol 20 (9) ◽  
pp. 1389-1408 ◽  
Author(s):  
Philippe Erdmer ◽  
Herwart Helmstaedt

Eclogite occurring in central Yukon, at Faro and near Last Peak, as lenses interleaved with muscovite–quartz blastomylonite has the chemical and field characteristics of group C rocks. From sigmoidal inclusion trails in garnet, from geothermometry and geobarometry, and from mineral parageneses, the eclogite is inferred to have a crustal protolith and to have followed a hysteretic, subduction-cycle P–T trajectory. Transformation of basic igneous rock into schist was followed by eclogite metamorphism during which pressure was at least 1000 MPa and temperature was between 600 and 700 °C. Uplifting involved passage through the stability field of glaucophane; the eclogite and its host rocks were then subjected to greenschist fades metamorphism and deformation, with temperature at approximately 400 °C. The rocks were emplaced as thrust sheets against or onto the western North American cratonal margin. The tectonic boundary ranges from nearly vertical, where it is outlined by a zone of steeply dipping mélange, to nearly horizontal beneath klippen of cataclastic rocks that lie on North American miogeoclinal strata. Together with occurrences of eclogite on strike, in Yukon, near Fairbanks (Alaska), and near Pinchi Lake (British Columbia), eclogite at Faro and near Last Peak implies that the Yukon Cataclastic Complex is a deeply eroded collision mélange that borders over 1000 km of the ancient continental margin.



Sign in / Sign up

Export Citation Format

Share Document