intertidal environment
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hyun-Ki Hong ◽  
Chang Wan Kim ◽  
Jeong-Hwa Kim ◽  
Nobuhisa Kajino ◽  
Kwang-Sik Choi

In the rocky intertidal environment, the frequency and duration of heatwaves have increased over the last decade, possibly due to global climate change. Heatwaves often result in lethal or sub-lethal disturbances in benthic animals by changing their metabolic activities. In this study, we investigated the impacts of extreme heatwave stress on the hemocyte functions of Mytilisepta virgata and subsequent mortality to gain a better understanding of the potential causes and consequences of mass mortality events in this mussel during summer. We discriminated three types of hemocytes in the hemolymph, granulocytes, hyalinocytes, and blast-like cells, using flow cytometry and revealed that granulocytes were the major hemocyte involved in cellular defensive activities, such as phagocytosis and reactive oxygen species (ROS) production. For the experiment, mussels were exposed to a 40°C air temperature for 12 h per day over 5 days under laboratory conditions as a simulated semi-diurnal tidal cycle. Mortality began to occur within 3 days after beginning the experiment, and all mussels had died by the end of the experiment. Flow cytometry indicated that the mussels exposed to high air temperatures produced significantly more ROS than did the control mussels within 2 days after the onset of the experiment, which may have caused oxidative stress. Such high levels of ROS in the hemolymph increased DNA damage in hemocytes after 3 days of exposure and decreased the phagocytosis of hemocytes 4 days after the experiment began. The observed mortality and decline in immune capacity suggested that an extreme heat event occurring in the rocky intertidal ecosystem during summer could exert sublethal to lethal impacts on macrobenthic animals.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Anthony Mau ◽  
Erik C. Franklin ◽  
Kazu Nagashima ◽  
Gary R. Huss ◽  
Angelica R. Valdez ◽  
...  

AbstractMeasurements of life-history traits can reflect an organism’s response to environment. In wave-dominated rocky intertidal ecosystems, obtaining in-situ measurements of key grazing invertebrates are constrained by extreme conditions. Recent research demonstrates mollusc shells to be high-resolution sea-surface temperature proxies, as well as archival growth records. However, no prior molluscan climate proxy or life-history reconstruction has been demonstrated for the tropical rocky intertidal environment—a zone influenced by warmer waters, mixed tides, trade-wind patterns, and wave-action. Here, we show near-daily, spatiotemporal oxygen isotope signatures from the tropical rocky intertidal environment by coupling secondary ion mass spectrometry analysis of oxygen isotopes with the sclerochronology of an endemic Hawaiian intertidal limpet Cellana sandwicensis, that is a significant biocultural resource harvested for consumption. We also develop a method for reliable interpretation of seasonal growth patterns and longevity in limpets. This study provides a robust approach to explore tropical intertidal climatology and molluscan life-history.


2021 ◽  
Vol 51 (3) ◽  
pp. 182-209
Author(s):  
Zoë R. F. Verlaak ◽  
Laurel S. Collins

ABSTRACT This study examined the environmental factors that control the distribution of modern foraminiferal assemblages in the Everglades in order to provide baseline data for a paleoenvironmental study. Total assemblages from the surface 2 cm of 30 sites across the marsh and mangrove environments of southwest Florida were investigated. Eight environmental variables, including average salinity, salinity range, pH, total phosphorus, temperature, and dissolved oxygen, and total organic carbon and total inorganic carbon measured on bulk sediments, as well as the elevation and distance from the coastline were determined for each of the 30 sampling locations. In total, 82 species were identified, the majority of which were calcareous. Diversity decreases, dominance increases, and agglutinated taxa increase from the coastline inland. Rotaliina are equally abundant across the intertidal environment, whereas Miliolina are common near the coast and in lagoons or inland lakes. The most important factor controlling foraminiferal distribution is total organic carbon, followed by total inorganic carbon, distance from coastline, total phosphorus, and salinity. Jadammina macrescens and Miliammina fusca indicate lower salinities (<15 psu). Good indicators for higher salinities are Haplophragmoides wilberti (10–20 psu) and Arenoparrella mexicana (10–20 psu and 28–30 psu). Ammonia spp. prefer salinities >15 psu and Elphidium spp. >20 psu. Ammonia tepida, Helenina anderseni, Trochammina inflata, and A. mexicana prefer organic-rich sediments. Thus, the benthic foraminifera from Everglades sediments are excellent salinity proxies and can be used to determine the history of habitat change in this area as well as to assess past trends in the rate of sea level rise.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Alf Enrique Meling-López ◽  
Silvia Emilia Ibarra-Obando ◽  
Horacio De la Cueva ◽  
Pedro Ortega-Romero ◽  
Adriana Leticia Navarro-Verdugo

Does Zostera marina exhibit phenotypic plasticity, maximizing fitness in traits responding to environmental factors, i.e., depth and temperature? We compared the vegetative and sexual phenology and reproductive effort of Z. marina by analyzing vegetative and reproductive shoot density, biomass, and reproductive stages to determine structural features of vegetative and reproductive shoots from subtidal and intertidal environments in San Quintín Bay, Baja California, a year before and after the 1997–1998 El Niño/Southern Oscillation (ENSO). We found significant differences in vegetative and reproductive biomass between intertidal and subtidal environments driven by temperature differences between ENSO and non-ENSO years. Subtidal plants had lower density of long reproductive shoots and a shorter reproductive cycle. Seed release occurred from May to October in the subtidal environment, and from May to November in the intertidal environment. Maximal recorded values were 219.5 (±45.8) seeds per reproductive shoot in the subtidal environment and 151.3 (±21.5) in the intertidal environment. We observed higher sexual activity and lower vegetative biomass in the intertidal environment, the most stressful environment. Both vegetative and reproductive biomass were affected by the increase in temperature during ENSO, but vegetative and reproductive shoot densities were not affected.


2020 ◽  
Vol 9 (12) ◽  
pp. 749
Author(s):  
Matthew S. O’Banion ◽  
Michael J. Olsen ◽  
Jeff P. Hollenbeck ◽  
William C. Wright

Extensive gaps in terrestrial laser scanning (TLS) point cloud data can primarily be classified into two categories: occlusions and dropouts. These gaps adversely affect derived products such as 3D surface models and digital elevation models (DEMs), requiring interpolation to produce a spatially continuous surface for many types of analyses. Ultimately, the relative proportion of occlusions in a TLS survey is an indicator of the survey quality. Recognizing that regions of a scanned scene occluded from one scan position are likely visible from another point of view, a prevalence of occlusions can indicate an insufficient number of scans and/or poor scanner placement. Conversely, a prevalence of dropouts is ordinarily not indicative of survey quality, as a scanner operator cannot usually control the presence of specular reflective or absorbent surfaces in a scanned scene. To this end, this manuscript presents a novel methodology to determine data completeness by properly classifying and quantifying the proportion of the site that consists of point returns and the two types of data gaps. Knowledge of the data gap origin can not only facilitate the judgement of TLS survey quality, but it can also identify pooled water when water reflections are the main source of dropouts in a scene, which is important for ecological research, such as habitat modeling. The proposed data gap classification methodology was successfully applied to DEMs for two study sites: (1) A controlled test site established by the authors for the proof of concept of classification of occlusions and dropouts and (2) a rocky intertidal environment (Rabbit Rock) presenting immense challenges to develop a topographic model due to significant tidal fluctuations, pooled water bodies, and rugged terrain generating many occlusions.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Alessio Rovere ◽  
Marta Pappalardo ◽  
Sebastian Richiano ◽  
Marina Aguirre ◽  
Michael R. Sandstrom ◽  
...  

AbstractReconstructions of global mean sea level from earlier warm periods in Earth’s history can help constrain future projections of sea level rise. Here we report on the sedimentology and age of a geological unit in central Patagonia, Argentina, that we dated to the Early Pliocene (4.69–5.23 Ma, 2σ) with strontium isotope stratigraphy. The unit was interpreted as representative of an intertidal environment, and its elevation was measured with differential GPS at ca. 36 m above present-day sea level. Considering modern tidal ranges, it was possible to constrain paleo relative sea level within  ±2.7 m (1σ). We use glacial isostatic adjustment models and estimates of vertical land movement to calculate that, when the Camarones intertidal sequence was deposited, global mean sea level was 28.4 ± 11.7 m (1σ) above present. This estimate matches those derived from analogous Early Pliocene sea level proxies in the Mediterranean Sea and South Africa. Evidence from these three locations indicates that Early Pliocene sea level may have exceeded 20m above its present level. Such high global mean sea level values imply an ice-free Greenland, a significant melting of West Antarctica, and a contribution of marine-based sectors of East Antarctica to global mean sea level.


Author(s):  
Qikun Xing ◽  
Sylvie Rousvoal ◽  
Catherine Leblanc

AbstractSaccharina latissima, known as sugar kelp, is a brown macroalga with huge ecological and economic values. In marine intertidal environment, S. latissima has to cope with both biotic and abiotic stress, which can cause the reduction of the yield during cultivation. To better understand the physiological responses of S. latissima under different stress conditions, large-scale transcriptomic analyses are useful to explore global metabolic pathway regulations. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) is a powerful and rapid method for further quantifying changes in gene expression, and for targeting specific defense-related gene pathways. However, its level of accuracy is highly related to the expression stability of reference genes used for normalization and those still need to be evaluated in S. latissima. In this study, we therefore experimentally tested eight candidate reference genes identified from in silico screening of public transcriptomic datasets of S. latissima from different abiotic and biotic stress treatments. The stability analysis using complementary statistical approaches showed that EIF5B and ATPase are the most stable reference genes under biotic stress, whereas, under temperature and light stress, their combination with NDH gene is the best choice for RT-qPCR normalization. The validated reference genes were used to monitor the expression of target genes, related to oxidative responses, such as those involved in oxylipin pathways, in S. latissima plantlets submitted to different stress in laboratory-controlled conditions.


2020 ◽  
pp. 1-28
Author(s):  
Yvonne Battiau-Queney ◽  
Alain Préat ◽  
Alain Trentesaux ◽  
Philippe Recourt ◽  
Viviane Bout-Roumazeilles

Abstract Bullslaughter Bay in southern Pembrokeshire, UK, exposes sections of Upper Mississippian limestone strata. In many places, the rock suffered an isovolumetric alteration during a period of sea-level oscillations. We used multiple approaches to study the weathered rocks, combining sedimentological, petrographic and isotopic compositions (δ18O and δ13C values). Two main microfacies are recognized: (i) packstones/grainstones, characteristic of an open marine shallow subtidal/intertidal environment, with a high degree of agitation, slightly elevated salinity and temporary subaerial exposure; and (ii) mudstones/wackestones in a lagoonal setting and intertidal or supratidal environments, with a pedogenetic influence. In both cases, a complex diagenetic story, which started early in a meteoric environment, induced a strong alteration producing loose sediments in place of the parent rock. Calcretization, at or near the sediment surface in the vadose zone, was one of the most widespread diagenetic modes. It could be associated with beachrocks. Carbon and oxygen stable isotope analyses from more or less weathered limestones support the petrographic data: they show non-marine values with δ13C ranges of from −2.13 ‰ to 1.75 ‰ and δ18O from −6.05 ‰ to −4.66 ‰. These values are systematically lower than those of the middle Carboniferous seawater. Some periods of low sea level and subaerial exposure allowed gypsum to form. Neoformation of euhedral quartz by probable replacement after sulfate, and halite pseudomorphs after gypsum in a hypersaline environment are documented for the first time in southern Pembrokeshire. The studied weathered limestones present a complex diagenetic evolution related to sea-level oscillations in a range of hot and contrasting seasonal climates.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongmei Wang ◽  
Xinzi Yu ◽  
Kuipeng Xu ◽  
Guiqi Bi ◽  
Min Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document