scholarly journals Unitary signings and induced subgraphs of Cayley graphs of $\mathbb{Z}_2^{n}$

2020 ◽  
Author(s):  
Noga Alon ◽  
Kai Zheng

Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $f(x)\not=f(x+e_i)$, where $e_i$ is the $i$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of disjoint subsets $I$ of $\{1,..,n\}$ such that flipping the coordinates indexed by $I$ changes the value of $f(x)$, and the _block sensitivity_ of $f$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $x$, the block sensitivity of $f$ is at least the sensitivity of $f$. The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $k\ge 2$ and define a Boolean function $f:\{0,1\}^{2k^2}\to\{0,1\}$ as follows: the coordinates of $x\in\{0,1\}^{2k^2}$ are split into $k$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $f$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two. The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $n$-dimensional cube $\{0,1\}^n$ induces a subgraph that contains a vertex with degree at least $\sqrt{n}$. The present article extends this result as follows: every Cayley graph with the vertex set $\{0,1\}^n$ and any generating set of size $d$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $\sqrt{d}$. In particular, when the generating set consists of the $n$ unit vectors, the Cayley graph is the $n$-dimensional hypercube.


2014 ◽  
Vol 23 (4) ◽  
pp. 585-606
Author(s):  
RAVI MONTENEGRO

We extend the conductance and canonical paths methods to the setting of general finite Markov chains, including non-reversible non-lazy walks. The new path method is used to show that a known bound for the mixing time of a lazy walk on a Cayley graph with a symmetric generating set also applies to the non-lazy non-symmetric case, often even when there is no holding probability.



2015 ◽  
Vol 25 (08) ◽  
pp. 1275-1299 ◽  
Author(s):  
Melanie Stein ◽  
Jennifer Taback ◽  
Peter Wong

Let [Formula: see text] denote the group whose Cayley graph with respect to a particular generating set is the Diestel–Leader graph [Formula: see text], as described by Bartholdi, Neuhauser and Woess. We compute both [Formula: see text] and [Formula: see text] for [Formula: see text], and apply our results to count twisted conjugacy classes in these groups when [Formula: see text]. Specifically, we show that when [Formula: see text], the groups [Formula: see text] have property [Formula: see text], that is, every automorphism has an infinite number of twisted conjugacy classes. In contrast, when [Formula: see text] the lamplighter groups [Formula: see text] have property [Formula: see text] if and only if [Formula: see text].



10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.



Author(s):  
V. S. Guba

By the density of a finite graph we mean its average vertex degree. For an [Formula: see text]-generated group, the density of its Cayley graph in a given set of generators, is the supremum of densities taken over all its finite subgraphs. It is known that a group with [Formula: see text] generators is amenable if and only if the density of the corresponding Cayley graph equals [Formula: see text]. A famous problem on the amenability of R. Thompson’s group [Formula: see text] is still open. Due to the result of Belk and Brown, it is known that the density of its Cayley graph in the standard set of group generators [Formula: see text], is at least [Formula: see text]. This estimate has not been exceeded so far. For the set of symmetric generators [Formula: see text], where [Formula: see text], the same example only gave an estimate of [Formula: see text]. There was a conjecture that for this generating set equality holds. If so, [Formula: see text] would be non-amenable, and the symmetric generating set would have the doubling property. This would mean that for any finite set [Formula: see text], the inequality [Formula: see text] holds. In this paper, we disprove this conjecture showing that the density of the Cayley graph of [Formula: see text] in symmetric generators [Formula: see text] strictly exceeds [Formula: see text]. Moreover, we show that even larger generating set [Formula: see text] does not have doubling property.



1999 ◽  
Vol 42 (3) ◽  
pp. 611-620
Author(s):  
Steven N. Evans

A sequential construction of a random spanning tree for the Cayley graph of a finitely generated, countably infinite subsemigroup V of a group G is considered. At stage n, the spanning tree T isapproximated by a finite tree Tn rooted at the identity.The approximation Tn+1 is obtained by connecting edges to the points of V that are not already vertices of Tn but can be obtained from vertices of Tn via multiplication by a random walk step taking values in the generating set of V. This construction leads to a compactification of the semigroup V inwhich a sequence of elements of V that is not eventually constant is convergent if the random geodesic through the spanning tree T that joins the identity to the nth element of the sequence converges in distribution as n→∞. The compactification is identified in a number of examples. Also, it is shown that if h(Tn) and #(Tn) denote, respectively, the height and size of the approximating tree Tn, then there are constants 0<ch≤1 and 0≥c# ≤log2 such that limn→∞ n–1 h(Tn)= ch and limn→∞n–1 log# (Tn)= c# almost surely.



2013 ◽  
Vol 05 (03) ◽  
pp. 1350012 ◽  
Author(s):  
N. SRIDHARAN ◽  
S. AMUTHA ◽  
S. B. RAO

Let G be a graph. The gamma graph of G denoted by γ ⋅ G is the graph with vertex set V(γ ⋅ G) as the set of all γ-sets of G and two vertices D and S of γ ⋅ G are adjacent if and only if |D ∩ S| = γ(G) – 1. A graph H is said to be a γ-graph if there exists a graph G such that γ ⋅ G is isomorphic to H. In this paper, we show that every induced subgraph of a γ-graph is also a γ-graph. Furthermore, if we prove that H is a γ-graph, then there exists a sequence {Gn} of non-isomorphic graphs such that H = γ ⋅ Gn for every n.



2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.



2015 ◽  
Vol 14 (09) ◽  
pp. 1540011 ◽  
Author(s):  
I. Bermejo ◽  
I. García-Marco ◽  
E. Reyes

Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph G, checks whether its toric ideal PG is a complete intersection or not. Whenever PG is a complete intersection, the algorithm also returns a minimal set of generators of PG. Moreover, we prove that if G is a connected graph and PG is a complete intersection, then there exist two induced subgraphs R and C of G such that the vertex set V(G) of G is the disjoint union of V(R) and V(C), where R is a bipartite ring graph and C is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if R is 2-connected and C is connected, we list the families of graphs whose toric ideals are complete intersection.



2018 ◽  
Vol 17 (06) ◽  
pp. 1850116
Author(s):  
Saadoun Mahmoudi ◽  
Shahram Mehry ◽  
Reza Safakish

Let [Formula: see text] be a subset of a commutative graded ring [Formula: see text]. The Cayley graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The Cayley sum graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be the set of homogeneous elements and [Formula: see text] be the set of zero-divisors of [Formula: see text]. In this paper, we study [Formula: see text] (total graph) and [Formula: see text]. In particular, if [Formula: see text] is an Artinian graded ring, we show that [Formula: see text] is isomorphic to a Hamming graph and conversely any Hamming graph is isomorphic to a subgraph of [Formula: see text] for some finite graded ring [Formula: see text].



2009 ◽  
Vol 19 (04) ◽  
pp. 585-594 ◽  
Author(s):  
JÖRG LEHNERT

It is known, that the existence of dead ends (of arbitrary depth) in the Cayley graph of a group depends on the chosen set of generators. Nevertheless there exist many groups, which do not have dead ends of arbitrary depth with respect to any set of generators. Partial results in this direction were obtained by Šunić and by Warshall. We improve these results by showing that abelian groups have only finitely many dead ends and that groups with more than one end (in the sense of Hopf and Freudenthal) have only dead ends of bounded depth. Only few examples of groups with unbounded dead end depth are known. We show that the Houghton group H2 with respect to the standard generating set is a further example. In addition we introduce a stronger notion of depth of a dead end, called strong depth. The Houghton group H2 has unbounded strong depth with respect to the same standard generating set.



Sign in / Sign up

Export Citation Format

Share Document