scholarly journals Model Matematika SEIR Pada Kanker Kulit Akibat Paparan Sinar Ultraviolet Di Provinsi Sulawesi Selatan

Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
Norliana Rahmasari

Penelitian ini bertujuan untuk membangun  model matematika SEIR pada kanker kulit akibat paparan sinar ultraviolet dengan asumsi bahwa terdapat masa inkubasi pada kanker kulit. Model ini dibagi menjadi 4 kelas yaitu susceptible, exposed, infected dan recovered. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membuat model SEIR pada kanker kulit di provinsi Sulawesi Selatan, menentukan titik ekuilibrium model, analisis kestabilan titik ekuilibrium, menentukan bilangan reproduksi dasar ( ). Data yang digunakan dalam membangun model adalah penderita kanker kulit tahun 2018 hingga tahun 2019 dari Rumah Sakit Wahidin Sudirohusodo kota Makassar. Hasil yang diperoleh bahwa semakin besar persentase laju kesembuhan tiap individu yang terinfeksi karena adanya pengobatan mengakibatkan populasi pada kelas recovered semakin meningkat dan populasi pada kelas infected mengalami penurunan. Dengan kata lain penyakit kanker kulit tidak mewabah di Provinsi Sulawesi Selatan.Kata Kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Kanker Kulit, Model SEIRThis study aims to build a mathematical model of SEIR in skin cancer due to ultraviolet light exposure assuming that there is an incubation period in skin cancer. This model is divided into 4 classes namely susceptible, exposed, infected and recovered. The research procedure is carried out through the stages: make a SEIR model on skin cancer in the province of South Sulawesi, determine the equilibrium point of the model, analyze the stability of the equilibrium point, determine the base reproduction number ( ). The data used in building the model were skin cancer sufferers from 2018 to 2019 from Sudirohusodo Wahidin Hospital in Makassar. The results obtained that the greater the percentage of recovery rate of each infected individual due to treatment causes the population of the recovered class to increase and the population of the infected class to decrease. In other words skin cancer is not endemic in South Sulawesi Province.Keywords: Equilibrium Point, Basic Reproductive Numbers, Skin Cancer, SEIR Model

Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
S. Sartika

Penelitian ini bertujuan untuk membangun model penyebaran penyakit Tifus tipe SIRI (Susceptible-Infected-Recovered-Infected), dengan menambahkan asumsi bahwa manusia yang sembuh dapat kembali terinfeksi penyakit Tifus. Model ini di bagi menjadi 3 kelas yaitu rentan, terinfeksi dan sembuh. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membangun model penyebaran penyakit Tifus tipe SIRI, Menguji Kestabilan titik kesetimbangan dan menentukan bilangan reproduksi dasar , kemudian menerapkannya pada kasus Penyakit Tifus di Provinsi Sulawesi Selatan. Data yang digunakan dalam membangun model adalah jumlah penderita penyakit Tifus tahun 2018 dari Dinas Kesehatan Provinsi Sulawesi Selatan. Model matematika tipe SIRI digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SIRI diperoleh bilangan reproduksi dasar (  sebesar 0,000903 yang menandakan bahwa penyebaran penyakit Tifus di Provinsi Sulawesi Selatan pada tahun 2018 bukan kejadian luar biasa atau dapat dikatakan bahwa seseorang yang terinfeksi penyakit Tifus ini tidak menyebabkan orang lain terkenapenyakit yang sama, dengan kata lain tidak terjadi wabah pada populasi tersebut.Kata kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tifus, Model SIRI. The research aims to build a SIRI model of the Typhoid spread (Susceptible-Infected-Recovered-Infected) by adding assumption that people who are recovered might be infected again. This model is divided into three classes, namely, susceptible, infected and recovered. the research procedure is carried out through several stages: Building SIRI model for the spread of Typhoid, examining the stability of the equilibrium point and determining the basic reproduction number, and applying the model to Typhoid cases in South Sulawesi. The data is the number of Typhus patients in 2018 that was obtained from Health office of South Sulawesi Province. SIRI type mathematical models are used to determine the equilibrium point. Based on the simulation results of the SIRI model, the basic reproduction number is 0,000903 indicate that, indicating that the spread of Typhus in the Province of South Sulawesi in 2018 was not an extraordinary event or it can be said that someone who is infected with this Typhoid does not cause another person to contract the same disease, in other words there was no outbreak in that population.Keywords: equilibrium Point, Basic Reproductive Number, Typhoid, SIRI Model.


2018 ◽  
Vol 1 (April) ◽  
pp. 29-33
Author(s):  
M. Ivan Ariful Fathoni

Swine flu is an acute respiratory infection that attacks the body's organs especially the lungs. The disease is caused by Influenza Virus Type A, type H1N1. In this article constructed mathematical model of the spread of H1N1 disease. Mathematical model that created the model Susceptible, Exposed, Infective, and Treatment. The existence of behavior change and influence of infected individual density become the reason of model formation with saturation occurrence rate. From the dynamic analysis, the model has two equilibrium points, that is, a stable equilibrium free equilibrium point when the basic reproduction number is less or equal to one, and an endemic equilibrium point that exists and is stable when the basic reproduction number is greater than one. Finally, the results of the analysis prove the control of the spread of disease into a disease-free state.   Flu babi adalah infeksi saluran pernapasan akut yang menyerang organ tubuh terutama paru-paru. Penyakit ini disebabkan oleh Virus Influenza tipe A, jenis H1N1. Pada artikel ini dikonstruksi model matematika penyebaran penyakit H1N1. Model matematika yang dibuat yaitu model Susceptible, Exposed, Infective, dan Treatment. Adanya perubahan perilaku dan pengaruh kepadatan individu terinfeksi menjadi alasan pembentukan model dengan tingkat kejadian tersaturasi. Dari hasil analisis dinamik, model memiliki dua titik kesetimbangan, yaitu titik kesetimbangan bebas penyakit yang bersifat stabil saat bilangan reproduksi dasar bernilai lebih kecil atau sama dengan satu, dan titik kesetimbangan endemi yang eksis dan bersifat stabil saat bilangan reproduksi dasar bernilai lebih besar dari satu. Pada akhirnya, hasil analisis membuktikan adanya kontrol penyebaran penyakit menjadi keadaan bebas penyakit.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012025
Author(s):  
S M Lestari ◽  
Y Yulida ◽  
A S Lestia ◽  
M A Karim

Abstract This research discussed the mathematical model of smoking behavior. The model will be analogous to an epidemic model which will be divided into several compartments/groups. This research aimed to explain the formation of a mathematical model of smoking behavior, to investigate the equilibrium point, the value of the basic reproduction number, to analyze the stability of the model, then to determine and interpret the numerical solutions using the fourth-order Runge-Kutta method. By the results of this research, a mathematical model of smoking behavior which consists of three compartments, namely the population of non-smokers, smokers and ex-smokers, was obtained. Based on the model formed the smoke-free equilibrium point and the smoker equilibrium point, then the basic reproduction number was also obtained using the next generation matrix. Furthermore, the result of the stability analysis of the smoker-free population was asymptotically stable provided that the basic reproduction number is less than one, while the population was asymptotically stable provided that the basic reproduction number is greater than one. The simulation of the model was presented to support the explanation of the stability analysis of the model using the fourth-order Runge-Kutta method based on the parameters that met the requirements of the stability analysis.


2020 ◽  
Vol 12 (4) ◽  
pp. 525-536
Author(s):  
K. S. Rahman ◽  
S. R. Mitkari ◽  
S. Shaikh

In this paper we have presented a deterministic model for pneumonia transmission and we have used the model to avail the potential impact of therapy. The model is based on the vaccinated-susceptible-carrier-infected-recovered-susceptible compartmental structure and their possible interventions with the possibility of infected individual recovery from natural immunity. Here, we have modeled Pneumonia considering vaccination, screening and treatment with a system of nonlinear ordinary differential equation. The model reproduction number R0 is derived and the stability of the equilibria are derived. The stability of equilibrium points is analyzed. The results shows that there exists a locally stable disease free equilibrium points, E0 when R0<1 and a unique endemic equilibrium E1, when R0>1. Infection free point was found to be locally stable and if reproduction number is greater than unity, then there is unique endemic equilibrium point and if it is less than unity, the endemic equilibrium point is globally asymptotically stable and pneumonia will be eliminated.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2018 ◽  
Vol 15 (2) ◽  
pp. 67
Author(s):  
Stella Maryana Belwawin

AbstractThis aim of this study is to determine the point of equilibrium and analyze the stability of SEIAR-SEI model on malaria disease with asymptomatic infection, super infection and the effect of the mosquito's life cycle. This study also aim is to measure the sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes through the magnitude of . The method in this research is deductively, through several stage, such as  determination of disease-free equilibrium point and endemic equilibrium point, determination of basic reproduction number (), analyze of the basic reproduction number sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes. The endemic equilibrium point was obtained using rule of Descartes. The result show that the change in the value of parameter , , and  has effect on the basic reproduction number (). Treatment factors in the human population influence the elimination of malaria in a population. Whereas asymptomatic infection factors and the birth rate of adult mosquitoes influence the increase in malaria infection. Keywords:  Malaria, asymptomatic infection, super infection, basic reproduction number, rule of descrates. AbstrakPenelitian ini bertujuan menentukan titik keseimbangan dan menganalisis kestabilan dari model SEIAR_SEI pada penyakit malaria dengan pengaruh infeksi asimtomatik, super infeksi, dan siklus hidup nyamuk. Penelitian ini juga bertujuan mengukur tingkat sensitivitas penyebaran penyakit malaria terhadap parameter infeksi asimtomatik, laju pengobatan, serta laju kelahiran nyamuk.melalu besaran .  Metode yang digunakan dalam penelitian ini adalah metode deduktif dengan langkah-langkah : menentukan titik keseimbangan bebas penyakit dan endemik dan menentukan bilangan reproduksi dasar ). Analisis sensitivitas bilangan reproduksi dasar dilakukan terhadap parameter infeksi asimtomatik, pengobatan, dan laju kelahiran nyamuk. Tititk keseimbangan endemik diperoleh dengan aturan descrates. Hasil yang diperoleh menunjukkan parameter , , dan  berpengaruh terhadap bilangan reproduksi dasar (). Faktor pengobatan berpengaruh terhadap eliminasi penyakit malaria. Sedangkan faktor infeksi asimtomatik dan laju kelahiran nyamuk dewasa berpengaruh terhadap peningkatan infeksi penyakit malaria. Kata kunci: Malaria, Infeksi Asimtomatik, Super Infeksi, Bilangan Reproduksi Dasar, Aturan Descrates . 


2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


Author(s):  
Balvinder Singh Gill ◽  
Vivek Jason Jayaraj ◽  
Sarbhan Singh ◽  
Sumarni Mohd Ghazali ◽  
Yoon Ling Cheong ◽  
...  

Malaysia is currently facing an outbreak of COVID-19. We aim to present the first study in Malaysia to report the reproduction numbers and develop a mathematical model forecasting COVID-19 transmission by including isolation, quarantine, and movement control measures. We utilized a susceptible, exposed, infectious, and recovered (SEIR) model by incorporating isolation, quarantine, and movement control order (MCO) taken in Malaysia. The simulations were fitted into the Malaysian COVID-19 active case numbers, allowing approximation of parameters consisting of probability of transmission per contact (β), average number of contacts per day per case (ζ), and proportion of close-contact traced per day (q). The effective reproduction number (Rt) was also determined through this model. Our model calibration estimated that (β), (ζ), and (q) were 0.052, 25 persons, and 0.23, respectively. The (Rt) was estimated to be 1.68. MCO measures reduce the peak number of active COVID-19 cases by 99.1% and reduce (ζ) from 25 (pre-MCO) to 7 (during MCO). The flattening of the epidemic curve was also observed with the implementation of these control measures. We conclude that isolation, quarantine, and MCO measures are essential to break the transmission of COVID-19 in Malaysia.


2016 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Endah Purwati ◽  
Sugiyanto Sugiyanto

Ebola is a deadly disease caused by a virus and is spread through direct contact with blood or body fluids such as urine, feces, breast milk, saliva and semen. In this case, direct contact means that the blood or body fluids of patients were directly touching the nose, eyes, mouth, or a wound someone open. In this paper examined two mathematical models SIRD (Susceptibles-Infected-Recovery-Deaths) the spread of the Ebola virus in the human population. Both the mathematical model SIRD on the spread of the Ebola virus is a model by Abdon A. and Emile F. D. G. and research development model. This study was conducted to determine the point of disease-free equilibrium and endemic equilibrium point and stability analysis of the dots, knowing the value of the basic reproduction number (R0) and a simulation model using Matlab software version 6.1.0.450. From the analysis of the two models, obtained the same point for disease-free equilibrium point with the stability of different points and different points for endemic equilibrium point with the stability of both the same point and the same value to the value of the basic reproduction number (R0). After simulating the model using Matlab software version 6.1.0.450, it can be seen changes in the behavior of the population at any time.


Sign in / Sign up

Export Citation Format

Share Document