Technology Development for Adsorptive Heat Energy Converters - Advances in Chemical and Materials Engineering
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

0
(FIVE YEARS 0)

Published By IGI Global

9781799844327, 9781799844334

The chapter is devoted to design and performance of adsorptive heat pumps. In the first sub-division, state-of-the-art of the adsorptive heat pumping is analyzed. It involves analysing operating principle of adsorptive heat pumps, comparing of the properties of adsorbents used, bed specifications, and operating conditions. Original construction of the adsorptive heat pump is designed by authors for independent heat supply systems or hot water supply of buildings and other structures for various purposes. The composites ‘silica gel – sodium sulphate' or ‘silica gel – sodium acetate' were used as adsorbents. Discharging was performed in a daytime, when heat pump supplied heating system with water warmed to 45 – 35°C. The regeneration mode proceeded at night from 0.00 to 8.00 a.m. Efficiency of suggested adsorptive heat pump is estimated by two methods: as ratio of adsorption heat to sum of desorption heat and external heat supplied to sorbent during its heating up to regeneration temperature (coefficient of performance of cycle) and as ratio of heat of adsorption to heat supplied by solar collector (net coefficient of performance). Suggested heat pump coefficients of energy performance of cycle are stated to be 2.084 when composite ‘silica gel – sodium sulphate' used and 2.021 when ‘silica gel – sodium acetate' used. Seasonal dependence of net coefficient energy performance for suggested adsorptive heat pump based on composites ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' is revealed. Correlation of coefficients of energy performance of adsorptive heat pump and composite sorbents properties (sorption capacity and regeneration temperature) is stated. Insignificant decreasing of coefficients of energy performance when ‘silica gel – sodium acetate' used is explained by lower sorptive capacity as compared to ‘silica gel – sodium sulphate'. Suggested heat pump application perspectives are shown for heat supply systems to result from traditional energy sources independence and environmental advantages. Adsorptive heat pumps development challenges, major limitations for commercialization of adsorptive heat pumping, and requirements to ongoing innovations are analysed. The present chapter can be useful for energy efficient decentralized heat supply systems based on adsorptive heat pump unit.


The chapter is focused on technology of heat and moisture regeneration for ventilation systems. In the first sub-division recent progress in adsorptive technologies for air dehumidification, heating and conditioning is analyzed. In the next sub-divisions results of original researches of authors on adsorptive heat and moisture regeneration are given. The design of adsorptive heat-moisture regenerator for ventilation systems is shown. Its operation and the results of field tests are described. The technology of regeneration of low-potential heat and moisture by composite sorbent ‘silica gel – sodium sulphate' is suggested. Experimental plots of temperature, absolute and relative humidity at the inlet and the outlet of the apparatus and between cassettes with the composite are given. Correlation of flows switch-over time, airflow rate and temperature drop is stated. The relationships temperature efficiency factor vs. dimensionless temperature drop and moisture efficiency factor vs. absolute humidity dimensionless drop are derived with fair accuracy for engineering calculation. Ability of purposeful modification of the above-mentioned characteristics within broad ranges by changing the half-cycle time, the size of the granules of the adsorbent and its amount is revealed. The mathematical model and algorithm for determining the basic parameters of adsorptive regenerator operating processes are developed. The proposed algorithm involves calculating the volume of air passed through the layer of adsorptive heat-storage material, the concentration of water in the airflow at the outlet of the regenerator, the adsorption, the heat of adsorption, the final temperature of the cold air, the air temperature after mixing the cold air from the street and the warm air in the room at the warm end of the regenerator during inflow, calculation of the final concentration of water in the flow at the cold end of the regenerator, the volume of air passing through the layer of heat-accumulating material, adsorption and heat of adsorption, the final temperature of the air at the cold end of the regenerator, the air temperature after mixing of the cold air from the street and the warm air from the room at the cold end of regenerator during outflow, determining the temperature efficiency coefficient, summarized adsorption and maximal adsorption time. The correlation of air temperatures near the warm and cold end of the regenerator, as well as the temperature efficiency factors calculated according to the proposed algorithm and obtained by experimental way is confirmed. The mathematical modeling of the processes of operation of adsorption regenerators based on composites ‘silica gel – sodium sulphate' and ‘sodium acetate' in the conditions of the typical ventilation system of residential premises is carried out. The dependences of the temperature efficiency factor vs. the time of switching air flows and the velocity of air flow, as well as the temperatures of external and internal air under stationary conditions are shown. An optimal composition of composite adsorbents is stated to be 20% of silica gel and 80% of salt, that is, sodium sulphate or sodium acetate. Due to higher value of maximal adsorption composite ‘silica gel – Na2SO4' is shown to be required in half as much as compared with ‘silica gel – CH3COONa'. The results of the research can be used in the development of energy-efficient ventilation systems and devices for residential and warehouse premises.


The chapter is focused on modelling of performance of adsorptive heat storage devices and estimation of performance of heat storage devices. Two groups of models of adsorptive heat storage units suggested previous researchers are analyzed. The first one is focused on predicting the heat energy storage density, it being based on Dubinin-Polanyi theory. The second one is devoted to analyzing the kinetic of adsorption processes and performance of the adsorber or adsorptive-desorptive reactor filled with traditional adsorbent or salt which forms crystalline hydrates. The key drawback of both groups of models concerns with considering only one stage of exploitation of adsorptive heat storage device in spite of its operating in two-stage mode, that is, alternating discharge (adsorption) and charge (regeneration). It inhibits estimation of efficiency of adsorptive heat storage device basing on full operating cycle and its involving in heat supply system. Two algorithms for estimation of operating parameters are proposed by authors for closed-type and open-type heat storage devices. The algorithm for calculation of operating parameters of closed type adsorptive heat storage device is proposed: calculation of the mass transfer coefficient, adsorption, useful heat, that is, heat of adsorption, determination of the heat input, it being calculated as heat inputs for heating the adsorbent, device housing, water in the tank, evaporation of water in the tank, heating of the adsorbed water and desorption. Then efficiency factor is calculated. The operating characteristics of a closed-type heat energy storage device were studied when the composite adsorbent ‘silica gel – sodium sulphate' used. The effect of the humid airflow velocity on the efficiency factor is taken into account by introducing a coefficient equal to the value of the adsorption. An increase in the efficiency coefficient was stated when the velocity and relative humidity of the airflow. It is shown that the humid air flow temperature practically does not affect its value. Having been used the suggested algorithm, the optimal operating characteristics of an adsorptive heat storage device of a closed type based on a composite adsorbent ‘silica gel – sodium sulphate' for a private house heating system are revealed to be humid air velocities of 0.6 – 0.8 m/s and relative humidity 40 – 60%. When these operational data applied, the efficiency coefficient is shown to reach the maximum values (about 55%). Algorithm of calculation of operating parameter of open-type heat storage device includes computation of mass transfer coefficient, adsorption, useful heat (heat of adsorption), heat input for heating the adsorbent, device casing, water in the humidifier, evaporation of water, heating the adsorbed water, desorption, and calculating efficiency coefficient. Performance of open-type heat storage device based on the composite adsorbent ‘silica gel – sodium sulphate' is estimated. The optimal operating conditions of the heat accumulating device which allow operating with maximal magnitudes of efficiency coefficients 53 – 57% are stated to be humid airflow speed of 0.6 – 0.8 m/s and relative humidity of 40 – 60%. Correlation between efficiency factors obtained by experiments and calculated with suggested algorithm is confirmed. The possibility of reducing the power consumption when heat storage devices applied in 2,4 – 90 times versus decentralized heating systems on basis of solid fuel boiler, gas boiler and electric boiler is stated when open-type sorptive heat storage device used. Results of the study can be used to develop adsorptive storage devices in decentralized heat supply and ventilation systems and adsorption units for utilization of low-temperature waste heat.


The chapter is devoted to structure and properties of composite adsorbents ‘salt inside porous matrix'. Characteristics of adsorbents ‘salt inside porous matrix', such as ‘zeolite – crystalline hydrate', ‘vermiculite – crystalline hydrate', ‘silica gel – crystalline hydrate' were analysed. Main advantages of composite adsorbents are shown to be higher adsorptive capacity and lower regeneration temperature as compared with host matrix. Adsorptive capacities of composite materials are shown to be significantly enhanced by introduction of salts in host matrix such as zeolite, vermiculite, or silica gel. Water uptake by composite adsorbent is shown to be increased by rising the salt content in it. The drawback of most of existing impregnation technologies is shown to be impossibility of obtaining composite with salt content more than 40 – 60% along with complexity. Sol gel method is shown to be an alternative for conventional impregnation methods. Properties of adsorbents ‘silica gel – sodium sulphate' synthesized according to sol gel method developed by authors were considered. The composite ‘silica gel – sodium sulphate' composition and structure were studied by IR-spectroscopy and wide-angle x-ray scattering. Adsorptive properties of crystalline Na2SO4 when allocated in silicon oxygen matrix are shown to result from dispersion up to nanoscale. Adsorptive capacities and heat of adsorption of composites ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' surpass almost by 30% the value calculated from the linear superposition of the sorption capacities of the sorbent and massive salt. Their adsorption properties are shown to be not a linear combination of properties of silica gel and salt. The formation of a unique structure promoting an increase in the rate of reaction between crystalline hydrates and water vapor in the developed pores of the silicon-oxygen matrix is confirmed. It leads to increasing the heat of adsorption and the heat energy storage density. Strong difference of water sorption kinetic curves of composite ‘silica gel – sodium sulphate' and massive sodium sulphate is revealed. The correlation of their composition, structure, water adsorption kinetic, and operating characteristic as heat storage material is stated.


The chapter is devoted to basic principles for substantiation of working pair choice. Principles for substantiation for selection of adsorbate and adsorbent are considered. The main requirements to adsorbate are formulated as follows: low cost, easy of obtaining, small molecular size to facilitate the adsorption effect; high latent heat of evaporation and small volume in liquid state; high thermal conductivity; low viscosity, thermal stability with adsorbent in the operating temperature range; chemical stability in the working temperature range; non-toxicity for animals and human, non-aggressiveness and incombustibility; low pressure saturation (slightly above atmospheric pressure) at normal operating temperature; the absence of environmental problems. Water is shown to conform to these requirements. The crucial requirements to adsorbent are the ability to adsorb large amounts of adsorbate when cooled to environment temperature and give a high cooling effect; high values of maximal adsorption; desorption of the major portion of adsorbate (ideally all) when heated by an accessible source of heat; low heat capacity; good heat conductivity, short cycle time; no deterioration and loss of adsorption capacity over time or use; non-toxicity, non-aggressiveness; chemical physical compatibility with the selected adsorbate; low cost and wide availability. Properties of various types of adsorbents were compared. Composites ‘salt inside porous matrix' are shown to be promising media for heat storage and transformation. Characteristics of thermodynamic cycles of heat conversion were analysed. The ways to improve the coefficient of performance were analysed and shown to be affected by a proper choice of an adsorbent.


The chapter is devoted to prospects of application of adsorptive heat storage devices, principles of operating the adsorptive heat storage systems, design of adsorptive storage devices and main factors determining the design of adsorptive heat storage unit. Perspectives of application of adsorptive heat storage devices in heat supply systems were analyzed. Basic principles of operating of heat storage devices were considered. Adsorptive heat storage units operating in close and open modes were compared. Constructions of adsorptive heat storage units operating in open and close mode were described. An efficient algorithm for calculating the volume of the adsorptive thermal energy storage device for a decentralised heat supply system of a private house is suggested by authors. The following procedure of computation is proposed to involve: calculation of thermal load for heating including the determination of thermal losses through external fences, thermal losses due to infiltration and internal heat dissipation, the evaluation of maximal adsorption, adsorption heat, and determination of adsorbent mass and adsorbent volume. The maximal adsorption value is suggested to be calculated by the characteristics of the adsorbent, that is, its maximal adsorption or in the absence of data for a composite adsorbent, as a linear superposition for a mechanical mixture. The adsorbent mass is suggested to calculate as a ratio of a thermal load for heating and heat of adsorption. The adsorbent volume is calculated as ratio of mass and density of adsorbent. An evaluative calculation of the heat load for a private house was carried out with the proposed algorithm. Mass and volumes of conventional silica gels were compared with composite adsorbents ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' obtained by sol gel method developed by authors. Mass and volume of silica gels occur to surpass the suggested composite at least by 1.5 – 5 times. This is shown to result from higher maximal adsorption and heat of adsorption of suggested composite adsorbents. The optimal composition of the composite adsorbents ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' was determined according to the minimal volume of the layer of heat storage material. Both the lowest volume values and the highest efficiency of a composite adsorbents with a mass ratio of silica gel and Na2SO4 or CH3COONa 20: 80 are explained by the maximum value of adsorption heat. Suggested composite adsorbent ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' are shown to be promising for heat supply systems.


The chapter is devoted to the design and performance of adsorptive chillers. Basic types of design and operating principle of adsorptive chillers were analyzed. Advantages and disadvantages performance of one-, two-, three-, and four-bed solar power adsorptive chillers are compared. Performance of adsorptive refrigerators based on composite adsorbents was studied. The correlation between the adsorbent composition and the coefficient of energy performance of the adsorptive chiler was revealed. An optimal composition of adsorbent 'silica gel – sodium sulphate' is stated to be of 20% silica gel and 80% sodium sulphate. The maximal values of the coefficient of performance of cycle of studied solar adsorptive chiller about of 1.14 are stated for composites containing about 20 wt. % silica gel and 80 wt% sodium sulphate. As a consequence of decreasing of adsorbent mass, the coefficient of performance is shown to increase when sodium sulphate content in the composite increased. Regeneration process parameters of the composite were shown to strongly affect on the coefficient of performance of the adsorptive chiller. The growth of the coefficient of performance is stated to result from decreasing the difference between adsorbent temperature and regeneration temperature from 85 to 55°C. The basic factors affecting the net coefficient of energy performance of the adsorptive solar refrigerator were stated daily solar radiant flux alongside with composition of the adsorbent and difference between adsorbent temperature and temperature regeneration. Net coefficients of performance of solar adsorptive refrigerator based on composite ‘silica gel – sodium sulphate' were stated to change from 0.25 to 0.34 during operating period. Utilization of the adsorption heat is suggested to warm the heat carrier which applied to heat adsorbent during regeneration. The ways to improve the design and performance of adsorptive solar chillers are suggested. The first one involves the introduction of solar collectors made of cellular polycarbonate plastics in the design of adsorptive solar chiller. Instantaneous efficiency coefficient were calculated as special thermal performance-solar radiant flux surface density ratio, optical efficiency factor is determined as special thermal performance-solar radiant flux surface density ratio at the equal temperatures of heat transfer medium and environment, reduced heat loss factor being calculated as the product of solar collector efficiency factor and net heat loss coefficient. The environmental test of developed collectors PSK-AV2-3, PSK-AV1-2, PSK-AV2-1, PSK-VS1-2, PSK-VS2-2, PSK-VS2-3, PSK-ST10-PW were conducted. The correlation of their results with laboratory tests when the thermohydraulic stand applied is shown. Relative accuracy of laboratory and environment tests was shown to be not exceeding 5 – 7%. The optical efficiency factor and the coefficient of thermal losses of polymeric solar collectors were determined. On the basis of the dependencies of the efficiency of the solar collectors vs. the reduced temperature, optimal designs of the polymeric solar collectors for the adsorption chilling solar systems are determined to be depended on the temperature of the regeneration temperature of the sorbents. As the temperatures of the regeneration of composite adsorbent ranged from 50ºС to 60ºС, appliance of the collectors PSK-AV2-1, PSK-CT10-PW occur to be expedient, and PSK-AB2-3, PSK-VS2-3, PSK-AB1-2, PSK-VS2-2, and PSK-VS1-2 are revealed to be more efficient when regeneration temperatures increased over 80 ºС. Thermotechnical characteristics of designed polymeric solar collectors are shown to surpass conventional metal and vacuum collectors. The perspectives of polymeric solar collectors in the design of adsorptive chilling solar plants were shown. Another way to improve the performance of adsorptive solar chillers concerns with equipping it with a photosensitive element and an electric drive, which will allow changing the angle of slope of the adsorber to the horizon depending on the intensity of the solar radiation. The chapter can be useful for design the efficient adsorptive chilling plants.


The chapter is focused on state of the art of materials for adsorptive heat energy conversion basic principles for substantiation of working pair choice. Types of heat storage materials based on heat storage mechanism were compared. Sensible heat mechanism of thermal energy is based on increasing the temperature of the material. Phase-change mechanism of heat energy storage concerns with alternating reversible processes of phase-changing. As a rule, they are mainly melting-crystallization. Thermo-chemical heat energy storage mechanism is based on reversible chemical reactions. Limitations of conventional sensible heat storage are shown to lowest density of heat energy storage determined by sensible heat of materials, which led to large mass storage units and additional needs of large areas and building volumes, calculated according to heat storage density, constant changing the temperature when discharged, the need for a large overheating of heat storage media. The main defects of phase-change materials are instability of properties of heat-accumulating substances in multiple cycles of crystallization – melting, degradation in time, corrosion activity, the need for developed surfaces of heat exchange and environmental danger. Commercilisation of thermal chemical storage materials is strongly limited by high operating temperatures of thermal chemical storage materials, which are unacceptable for systems of district heating and decentralized heat supply due to sanitary regulations, impropriety for multifold cycling because of irreversibility of a wide range of chemical reactions. Perspective of adsorptive heat energy storage and conversion is shown. Interval of operating temperatures and heat storage density of conventional adsorptive materials are shown to be intermediate between phase-change and thermal chemical heat storage materials. Properties of probable adsorptive heat storage materials were analysed according with literary data. Low adsorptive capacity of conventional adsorbents results in low heat of adsorption and heat energy storage density. Salts forming crystalline hydrate occur to exhibit rather high energy storage density of 1.9–2.7 GJ/m3 of crystalline hydrate, but their application is strongly inhibited not only by physical and chemical instability along with the corrosive activity of these salts at high temperatures, but instability in multifold cycling, degradation in time, and an underdeveloped heat exchange surface. As engineering solution, modification of conventional adsorbents with salt can be considered. Composites ‘salt inside porous matrix' is shown to be promising alternative to conventional adsorbents. Main advantages of these materials are low regeneration temperature and high adsorptive capacity. Crucial impediments of industrial introduction of composite adsorbents ‘salt inside porous matrix' is shown to be complex technology of their production based on rather expensive dry and wet impregnation of porous media by crystalline hydrate solutions. As an alternative, sol gel method for obtaining composite adsorbents ‘silica gel – crystalline hydrate' developed by authors is suggested. The adsorption properties of the obtained composite adsorbents ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' are shown to be non-linear combinations of characteristics of silica gel and massive salt. The key distinction of kinetics of adsorption of water vapor with massive salts and composites obtained with sol gel method is shown to be difference limitative stage of process. The adsorption of water with massive crystalline hydrates is shown to be complicated by kinetic limitations. For composite adsorbents limiting stage is water transport through the pore system. Composites ‘slilica gel – crystalline hydrate' are shown to be a promising material for adsorptive heat energy storage and conversion.


Sign in / Sign up

Export Citation Format

Share Document