scholarly journals Clinical Characterization of Genetic Hearing Loss Caused by a Mutation in the POU4F3 Transcription Factor

2000 ◽  
Vol 126 (5) ◽  
pp. 633 ◽  
Author(s):  
Moshe Frydman ◽  
Sarah Vreugde ◽  
Ben I. Nageris ◽  
Sigal Weiss ◽  
Oz Vahava ◽  
...  
Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


Author(s):  
Hong-Fei Wang ◽  
Hong-Yan Shan ◽  
He Shi ◽  
Dan-Dan Wu ◽  
Tong-Tong Li ◽  
...  

2014 ◽  
Vol 65 (15) ◽  
pp. 4433-4449 ◽  
Author(s):  
Kazuya Koyama ◽  
Mineyo Numata ◽  
Ikuko Nakajima ◽  
Nami Goto-Yamamoto ◽  
Hideo Matsumura ◽  
...  

2000 ◽  
Vol 168 (1-2) ◽  
pp. 77-87 ◽  
Author(s):  
Kyle W. Sloop ◽  
Amy McCutchan Schiller ◽  
Timothy P.L. Smith ◽  
John R. Blanton ◽  
Gary A. Rohrer ◽  
...  

1994 ◽  
Vol 269 (15) ◽  
pp. 11663-11671
Author(s):  
S.L. Swendeman ◽  
C. Spielholz ◽  
N.A. Jenkins ◽  
D.J. Gilbert ◽  
N.G. Copeland ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1237
Author(s):  
Anna Morgan ◽  
Stefania Lenarduzzi ◽  
Beatrice Spedicati ◽  
Elisabetta Cattaruzzi ◽  
Flora Maria Murru ◽  
...  

Hearing loss (HL), both syndromic (SHL) and non-syndromic (NSHL), is the most common sensory disorder, affecting ~460 million people worldwide. More than 50% of the congenital/childhood cases are attributable to genetic causes, highlighting the importance of genetic testing in this class of disorders. Here we applied a multi-step strategy for the molecular diagnosis of HL in 125 patients, which included: (1) an accurate clinical evaluation, (2) the analysis of GJB2, GJB6, and MT-RNR1 genes, (3) the evaluation STRC-CATSPER2 and OTOA deletions via Multiplex Ligation Probe Amplification (MLPA), (4) Whole Exome Sequencing (WES) in patients negative to steps 2 and 3. Our approach led to the characterization of 50% of the NSHL cases, confirming both the relevant role of the GJB2 (20% of cases) and STRC deletions (6% of cases), and the high genetic heterogeneity of NSHL. Moreover, due to the genetic findings, 4% of apparent NSHL patients have been re-diagnosed as SHL. Finally, WES characterized 86% of SHL patients, supporting the role of already know disease-genes. Overall, our approach proved to be efficient in identifying the molecular cause of HL, providing essential information for the patients’ future management.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 630
Author(s):  
Yongqing Lan ◽  
Meng Li ◽  
Shuangli Mi

Hematopoietic differentiation is a well-orchestrated process by many regulators such as transcription factor and long non-coding RNAs (lncRNAs). However, due to the large number of lncRNAs and the difficulty in determining their roles, the study of lncRNAs is a considerable challenge in hematopoietic differentiation. Here, through gene co-expression network analysis over RNA-seq data generated from representative types of mouse myeloid cells, we obtained a catalog of potential key lncRNAs in the context of mouse myeloid differentiation. Then, employing a widely used in vitro cell model, we screened a novel lncRNA, named Gdal1 (Granulocytic differentiation associated lncRNA 1), from this list and demonstrated that Gdal1 was required for granulocytic differentiation. Furthermore, knockdown of Cebpe, a principal transcription factor of granulocytic differentiation regulation, led to down-regulation of Gdal1, but not vice versa. In addition, expression of genes involved in myeloid differentiation and its regulation, such as Cebpa, were influenced in Gdal1 knockdown cells with differentiation blockage. We thus systematically identified myeloid differentiation associated lncRNAs and substantiated the identification by investigation of one of these lncRNAs on cellular phenotype and gene regulation levels. This study promotes our understanding of the regulation of myeloid differentiation and the characterization of roles of lncRNAs in hematopoietic system.


Sign in / Sign up

Export Citation Format

Share Document