Synthesis of Glycerol Nucleic Acid (GNA) Phosphoramidite Monomers and Oligonucleotide Polymers

Author(s):  
Su Zhang ◽  
John C. Chaput
2014 ◽  
Vol 10 ◽  
pp. 2131-2138 ◽  
Author(s):  
Keunsoo Kim ◽  
Venkateshwarlu Punna ◽  
Phaneendrasai Karri ◽  
Ramanarayanan Krishnamurthy

IsoGNA, an isomer of glycerol nucleic acid GNA, is a flexible (acyclic) nucleic acid with bases directly attached to its linear backbone. IsoGNA exhibits (limited) base-pairing properties which are unique compared to other known flexible nucleic acids. Herein, we report on the details of the preparation of isoGNA phosphoramidites and an alternative route for the synthesis of the adenine derivative. The synthetic improvements described here enable an easy access to isoGNA and allows for the further exploration of this structural unit in oligonucleotide chemistry thereby spurring investigations of its usefulness and applicability.


2013 ◽  
Vol 52 (22) ◽  
pp. 5840-5844 ◽  
Author(s):  
Phaneendrasai Karri ◽  
Venkateshwarlu Punna ◽  
Keunsoo Kim ◽  
Ramanarayanan Krishnamurthy

2008 ◽  
Vol 130 (18) ◽  
pp. 5846-5847 ◽  
Author(s):  
Richard S. Zhang ◽  
Elizabeth O. McCullum ◽  
John C. Chaput

2013 ◽  
Vol 125 (22) ◽  
pp. 5952-5956 ◽  
Author(s):  
Phaneendrasai Karri ◽  
Venkateshwarlu Punna ◽  
Keunsoo Kim ◽  
Ramanarayanan Krishnamurthy

Author(s):  
W. Bernard

In comparison to many other fields of ultrastructural research in Cell Biology, the successful exploration of genes and gene activity with the electron microscope in higher organisms is a late conquest. Nucleic acid molecules of Prokaryotes could be successfully visualized already since the early sixties, thanks to the Kleinschmidt spreading technique - and much basic information was obtained concerning the shape, length, molecular weight of viral, mitochondrial and chloroplast nucleic acid. Later, additonal methods revealed denaturation profiles, distinction between single and double strandedness and the use of heteroduplexes-led to gene mapping of relatively simple systems carried out in close connection with other methods of molecular genetics.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


Sign in / Sign up

Export Citation Format

Share Document