scholarly journals Major softening at brittle‐ductile transition due to interplay between chemical and deformation processes: An insight from evolution of shear bands in the South Armorican Shear Zone

2016 ◽  
Vol 121 (2) ◽  
pp. 1158-1182 ◽  
Author(s):  
Zita Bukovská ◽  
Petr Jeřábek ◽  
Luiz F. G. Morales
2004 ◽  
Vol 41 (12) ◽  
pp. 1491-1505 ◽  
Author(s):  
J Bailey ◽  
B Lafrance ◽  
A M McDonald ◽  
J S Fedorowich ◽  
S Kamo ◽  
...  

The Thayer Lindsley mine is located in the South Range of the Sudbury impact structure, near the contact between the 1.85 Ga Sudbury Igneous Complex (SIC) and the Paleoproterozoic Southern Province. Ni–Cu ore zones at the mine are strongly deformed within a southeast-dipping, lower amphibolite-grade shear zone, which offsets the contact between the SIC and Southern Province rocks. Numerous shear sense indicators, including shear bands, drag folds, and δ- and σ-type rotated porphyroclasts, consistently indicate south-over-north, reverse, dip-slip movement parallel to the mineral stretching lineation in the shear zone. The attitude, slip direction, and metamorphic grade of the shear zone are similar to those of the regional northeast-striking South Range Shear Zone that formed during post-impact, northwest-directed ductile contraction of the Sudbury impact structure. The South Range Shear Zone is generally interpreted as a ca. 1.9–1.8 Ga Penokean structure. Anhedral brown titanite grains from the Thayer Lindsley shear zone yield a mean 207Pb/206Pb Penokean age of 1815 ± 15 Ma. These grains are mantled by younger, syntectonic, colourless titanite, which have a mean 207Pb/206Pb age of 1658 ± 68 Ma. This younger age suggests that the South Range and Thayer Lindsley shear zones may have formed during a 1.7–1.6 Ga collisional tectonic event that is recorded along the southeast margin of Laurentia from the southwest USA. (Mazatzal Orogeny), through the mid-continent to Wisconsin, and as far northeast as Labrador (Labradorian Orogeny). 40Ar/39Ar analyses indicate post-tectonic thermal resetting of biotite occurred at 1477 ± 8 Ma during felsic plutonism across the Sudbury area.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Maren Vormann ◽  
Wilfried Jokat

AbstractThe East African margin between the Somali Basin in the north and the Natal Basin in the south formed as a result of the Jurassic/Cretaceous dispersal of Gondwana. While the initial movements between East and West Gondwana left (oblique) rifted margins behind, the subsequent southward drift of East Gondwana from 157 Ma onwards created a major shear zone, the Davie Fracture Zone (DFZ), along East Africa. To document the structural variability of the DFZ, several deep seismic lines were acquired off northern Mozambique. The profiles clearly indicate the structural changes along the shear zone from an elevated continental block in the south (14°–20°S) to non-elevated basement covered by up to 6-km-thick sediments in the north (9°–13°S). Here, we compile the geological/geophysical knowledge of five profiles along East Africa and interpret them in the context of one of the latest kinematic reconstructions. A pre-rift position of the detached continental sliver of the Davie Ridge between Tanzania/Kenya and southeastern Madagascar fits to this kinematic reconstruction without general changes of the rotation poles.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2021 ◽  
Author(s):  
Wanli Gao ◽  
Zongxiu Wang

<p><strong><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.67d6c7216eff55356050161/sdaolpUECMynit/12UGE&app=m&a=0&c=5572aca4b392eef83f52919e1be673e9&ct=x&pn=gepj.elif&d=1" alt="">Abstract</strong>:The Zongwulong tectonic belt (ZTB) is located between the northern Qaidam tectonic belt and the south Qilian orogenic belt and contains Late Paleozoic and Early- Middle Triassic strata. Structural features and geochronology of Zongwulong ductile shear zone have key implications for the tectonic property of the ZTB. This study integrated field structure, microscopic structure and <sup>40</sup>Ar/<sup>39</sup>Ar laser probe analysis. The shear zone strikes ~NEE-SWW and dips at a high angle, with a NWW-SEE trending and WE stretching lineation, indicating the shear zone as a thrust- slip shear ductile shear. The asymmetric folds, rotating porphyroclast,structural lens and crenulation cleavage can be seen in the field. Mica fish, S − C fabrics, σ type quartz porphyroclastic and quartz wire drawing structure can also be observed under microscope, indicating that the strike- slip- related ductile deformation and mylonitization occurred under low- grade greenschist facies conditions at temperatures of <em>300° C − 400° C</em>.  The highly deformed<br>mylonite schist yielded <sup>40</sup>Ar/<sup>39</sup>Ar ages <em>(245.8±1.7)Ma </em>and <em>(238.5±2.6)</em>Ma for muscovite and biotite, respectively, indicating that the shear deformation occurred during the Early- Mid Triassic. Combined with comprehensive analysis of regional geology and petrology, the authors hold that the age of ductile shear deformation represents the time of Triassic orogeny in the ZTB. The oroginic activity was probably related to the oblique collision between the South Qilian block and the Oulongbuluke block after the closure of the northermost Paleo-Tethys ocean.</p>


1999 ◽  
Vol 303 (1-4) ◽  
pp. 193-222 ◽  
Author(s):  
Julie Newman ◽  
William M Lamb ◽  
Martyn R Drury ◽  
Reinoud L.M Vissers

2012 ◽  
Vol 169 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Jérémie Lemarchand ◽  
Philippe Boulvais ◽  
Martin Gaboriau ◽  
Marie-Christine Boiron ◽  
Romain Tartèse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document