scholarly journals The Dabie Extensional Tectonic System: Structural Framework

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Maren Vormann ◽  
Wilfried Jokat

AbstractThe East African margin between the Somali Basin in the north and the Natal Basin in the south formed as a result of the Jurassic/Cretaceous dispersal of Gondwana. While the initial movements between East and West Gondwana left (oblique) rifted margins behind, the subsequent southward drift of East Gondwana from 157 Ma onwards created a major shear zone, the Davie Fracture Zone (DFZ), along East Africa. To document the structural variability of the DFZ, several deep seismic lines were acquired off northern Mozambique. The profiles clearly indicate the structural changes along the shear zone from an elevated continental block in the south (14°–20°S) to non-elevated basement covered by up to 6-km-thick sediments in the north (9°–13°S). Here, we compile the geological/geophysical knowledge of five profiles along East Africa and interpret them in the context of one of the latest kinematic reconstructions. A pre-rift position of the detached continental sliver of the Davie Ridge between Tanzania/Kenya and southeastern Madagascar fits to this kinematic reconstruction without general changes of the rotation poles.


2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


1995 ◽  
Vol 132 (2) ◽  
pp. 151-170 ◽  
Author(s):  
C. J. Carson ◽  
P. G. H. M. Dirks ◽  
M. Hand ◽  
J. P. Sims ◽  
C. J. L. Wilson

AbstractMeta-sediments in the Larsemann Hills that preserve a coherent stratigraphy, form a cover sequence deposited upon basement of mafic–felsic granulite. Their outcrop pattern defines a 10 kilometre wide east–west trending synclinal trough structure in which basement–cover contacts differ in the north and the south, suggesting tectonic interleaving during a prograde, D1 thickening event. Subsequent conditions reached low-medium pressure granulite grade, and structures can be divided into two groups, D2 and D3, each defined by a unique lineation direction and shear sense. D2 structures which are associated with the dominant gneissic foliation in much of the Larsemann Hills, contain a moderately east-plunging lineation indicative of west-directed thrusting. D2 comprises a colinear fold sequence that evolved from early intrafolial folds to late upright folds. D3 structures are associated with a high-strain zone, to the south of the Larsemann Hills, where S3 is the dominant gneissic layering and folds sequences resemble D2 folding. Outside the D3 high-strain zone occurs a low-strain D3 window, preserving low-strain D3 structures (minor shear bands and upright folds) that partly re-orient D2 structures. All structures are truncated by a series of planar pegmatites and parallel D4 mylonite zones, recording extensional dextral displacements.D2 assemblages include coexisting garnet–orthopyroxene pairs recording peak conditions of ∼ 7 kbar and ∼ 780°C. Subsequent retrograde decompression textures partly evolved during both D2 and D3 when conditions of ∼ 4–5 kbar and ∼ 750°C were attained. This is followed by D4 shear zones which formed around 3 kbar and ∼ 550°C.It is tempting to combine D2–4 structures in one tectonic cycle involving prograde thrusting and thickening followed by retrograde extension and uplift. The available geochronological data, however, present a number of interpretations. For example, D2 was possibly associated with a clockwise P–T path at medium pressures around ∼ 1000 Ma, by correlation with similar structures developed in the Rauer Group, whilst D3 and D4 events occurred in response to extension and heating at low pressures at ∼ 550 Ma, associated with the emplacement of numerous granitoid bodies. Thus, decompression textures typical for the Larsemann Hills granulites maybe the combined effect of two separate events.


2006 ◽  
Vol 143 (4) ◽  
pp. 431-446 ◽  
Author(s):  
C. SARTINI-RIDEOUT ◽  
J. A. GILOTTI ◽  
W. C. McCLELLAND

The North-East Greenland eclogite province is divided into a western, central and eastern block by the sinistral Storstrømmen shear zone in the west and the dextral Germania Land deformation zone in the east. A family of steep, NNW-striking dextral mylonite zones in the Danmarkshavn area are geometrically and kinematically similar to the ductile Germania Land deformation zone, located 25 km to the east. Amphibolite facies deformation at Danmarkshavn is characterized by boudinage of eclogite bodies within quartzofeldspathic host gneisses, pegmatite emplacement into the boudin necks and subsequent deformation of pegmatites parallel to gneissosity, a widespread component of dextral shear within the gneisses, and localization of strain into 10–50 m thick dextral mylonite zones. The gneisses and concordant mylonite zones are cut by a swarm of weakly to undeformed, steeply dipping, E–W-striking pegmatitic dykes. Oscillatory-zoned zircon cores from two boudin neck pegmatites give weighted mean 206Pb/238U sensitive, high mass resolution ion microprobe (SHRIMP) ages of 376 ± 5 Ma and 343 ± 7 Ma. Cathodoluminescence images of these zircons reveal complex additional rims, with ages from ranging from c. 360 to 320 Ma. Oscillatory-zoned, prismatic zircons from two late, cross-cutting pegmatites yield weighted mean 206Pb/238U SHRIMP ages of 343 ± 5 Ma and 332 ± 3 Ma. Zircons from the boudin neck pegmatites record a prolonged growth history, marked by fluid influx, during amphibolite facies metamorphism beginning at c. 375 Ma. The cross-cutting pegmatites show that dextral deformation in the gneisses and ductile mylonite zones had stopped by c. 340 Ma. Ultrahigh-pressure metamorphism in the eastern block at 360 Ma requires that the Greenland Caledonides were in an overall contractional plate tectonic regime. This, combined with 20% steep amphibolite facies lineations in the eclogites, gneisses and mylonites suggests that dextral transpression may have been responsible for a first stage of eclogite exhumation between 370 and 340 Ma.


1989 ◽  
Vol 146 ◽  
pp. 5-12
Author(s):  
B Chadwick ◽  
P.R Dawes ◽  
J.C Escher ◽  
C.R.L Friend ◽  
R.P Hall ◽  
...  

The Ammassalik mobile belt is characterised by a regional layer cake structure of tectonically interleaved sheets of quartzo-feldspathic orthogneisses and supracrustal rocks. The sheets of supracrustal rocks are most abundant in the north of the belt and they include semi-pelitic kyanite-sillimanite gneisses, graphitic schists, marble, amphibolites and local peridotite. The sheets are regarded as parts of a disrupted supracrustal sequence, here termed the Siportoq supracrustal association. Preliminary isotopic age data suggest that most of the orthogneisses are late Archaean, although some have early Proterozoic ages. The Siportoq supracrustal association has yielded an early Proterozoic age. Amphibolite dyke swarms were emplaced at various stages in the evolution of the mobile belt. The Ammassalik belt has an ill-defined northern limit marked by heterogeneous retrogression of a granulite facies terrain up to 100 km wide. Most of the belt is at amphibolite facies, with its southern limit lying to the south of the area considered here. The structure in the south is dominated by nappes and shear zones dipping NE within a wide tract of late Archaean orthogneisses intruded by amphibolite dyke swarms with relatively well preserved primary characteristics. The structure in the north is characterised by more pervasive deformation which gave rise to complex sequences of thrusting and nappe development propagating from the north. Large domes were superimposed on the nappe pile, perhaps as buoyancy phenomena. The dioritic Ammassalik Intrusive Complex (c. 1885 Ma) with its granulite facies assemblages is regarded as a late kinematic phenomenon. Major post-tectonic complexes of granite, diorite and gabbro (c. 1580 Ma) were intruded at a high level well after the close of the tectonism in the Ammassalik mobile belt.


2009 ◽  
Vol 46 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Barbara L. Sherriff ◽  
Ian J. Ferguson ◽  
Michael W. Gupton ◽  
Jamie F. VanGulck ◽  
Nikolay Sidenko ◽  
...  

Extraction of gold from quartz–carbonate shear zones has left a barren deposit of tailings at Central Manitoba mine, which remains unchanged after 70 years. In this study, the shape of the basin, the groundwater and surface water flow regime, and the electrical conductivity of the tailings have been delineated using a combination of geotechnical, geophysical, and geochemical techniques. Groundwater and surface water flow from the north–south-fractured bedrock outwards to the east and west. A component of upward groundwater movement in the deposit is due to evaporation in hot, dry summers, limited recharge from precipitation, and the tailings basin being a local groundwater discharge zone. Electromagnetic surveys indicate that the thickness of the tailings and underlying peat bog material increases from ∼1 m at the south of the tailings to ∼5 m at the north. The surveys provided an effective way of mapping the spatial distribution of acidic pore fluids and associated increased salinity. Zones of acidification, occurring mainly on the south side of the tailings, support the hypothesis that acidification is due to differential settling during the initial discharge of carbonate and sulfide minerals.


2021 ◽  
Author(s):  
Eleonora Balkanska ◽  
Stoyan Georgiev ◽  
Alexandre Kounov ◽  
Irena Peytcheva ◽  
Takahiro Tagami ◽  
...  

<p>Sredna Gora Zone in Bulgaria is confined between the Balkan fold-thrust belt to the north and the Rhodope metamorphic complex to the south. The pre-Mesozoic basement of the central parts of the zone consists of Variscan high-grade metamorphic rocks intruded by Late Carboniferous granitoid plutons. They are transgressively overlaid by Triassic epicontinental, arc-related Upper Cretaceous volcaniclastic and Paleocene continental deposits. The Paleogene-Neogene sediments of the Thrace basin cover unconformably the older rock sequences. The zone experienced several compressional and extensional events during the Alpine time followed by post-orogenic extension in the Cenozoic.</p><p>We performed apatite fission-track analysis on rocks from the central, topographically highest parts of the Sredna Gora Zone in order to constrain the cooling history of the Variscan basement. With this aim four granitic samples were collected at different altitude (between 565 and 1604 m) from the tectonically uninterrupted section along the slope of Sredna Gora Mountains. The samples were processed and analyzed in the newly established Low-Temperature Thermochronology Laboratory in Bulgaria using LA-ICP-MS technique.</p><p>The samples yield apatite FT ages between 41.6 ± 2.6 (the highermost sample) and 39.4 ± 3.1 (the lowermost sample). The obtained confined mean tracks lengths are between 12.81 and 14.06 µm with standard deviation between 0.99 and 2.11 µm. The Dpar values vary from 1.75 µm to 1.46 µm (with standard deviation of approx. 0.20 µm).</p><p>The obtained positive age-altitude correlation suggests indeed that the studied part of the basement has cooled as one single block. The apparent exhumation rate is estimated to 0.46 mm/year. However, the positive Dpar-age correlation implies that the age dispersion could be influenced by apatite kinetic variability and hence relatively different closure temperature for the analysed samples may be suggested. Therefore, we consider the estimated apparent exhumation rate as only the minimum possible rate. The thermal models of the analysed samples (using HeFTy software) also show moderate cooling rates in the period between 45 and 35 Ma. This cooling could be related to the period of post-orogenic denudation and extension during the Eocene, associated with formation of the Thrace basin to the south-southeast. This extensional event, known from the whole Balkan Peninsula, is well documented in the neighbouring Balkan fold-thrust belt and the Rhodope metamorphic complex from where much faster exhumation rates were reported.</p><p> </p><p><strong>Acknowledgements</strong>. The study is supported by the grant 04/9 funded by the National Science Fund, Ministry of Education and Science, Bulgaria.</p>


1994 ◽  
Vol 31 (2) ◽  
pp. 293-307 ◽  
Author(s):  
D. J. White ◽  
R. M. Easton ◽  
N. G. Culshaw ◽  
B. Milkereit ◽  
D. A. Forsyth ◽  
...  

In 1990, Lithoprobe acquired 240 km of seismic-reflection data across parts of the Central Gneiss Belt (CGB) and the Central Metasedimentary Belt (CMB) within the western Grenville Province of southern Ontario. Interpretation of these data in conjunction with geological constraints provided by bedrock mapping supports a model of northwest-directed thrusting and crustal shortening for the Grenville Orogen. Within the CGB, the Parry Sound shear zone is imaged as a 3 km wide zone of reflections dipping southeastward at 20–25° and soling at depths < 7 km in the north and < 3 km in the south beneath Parry Sound domain. Parry Sound domain and the immediately adjacent domains are underlain by a gently southeast-dipping reflective zone at 4.5–12.0 km depth interpreted as a detachment surface, likely associated with the central Britt shear zone. This zone may have accommodated northwesterly transport of Parry Sound, southern Britt, and northwestern Rosseau domains over Britt domain during Grenvillian thrusting.Within the CMB, the seismic data indicate that crustal shortening and imbrication have not been confined to domain and terrane boundaries, as presently defined. A 6 km wide band of reflections dips south at ~20° from the surface within Bancroft terrane, soling into a mid-crustal décollement beneath Elzevir terrane. Beneath and to the north of this planar reflective zone is a complex pattern of strong, south-dipping (10–40°) reflections that extends from the near surface to the lower crust above a less reflective wedge-shaped zone. The zone of complex reflectivity projects updip to the CMB boundary zone and into the CGB; together with the linear band of reflections affiliated with Bancroft terrane, they form the tectonized boundary between the CGB and the CMB. To the south of the linear reflective zone, prominent reflective packages are restricted to the middle and upper crust. The generally nonreflective uppermost crust beneath Elzevir terrane is underlain by a series of gently southeast-dipping, antiformal reflections that appear to sole into the mid-crustal décollement beneath Mazinaw terrane. These observations suggest that the collision between the CMB and the CGB resulted in a sequence of relatively thin (15–20 km thick) allochthonous terranes within the CMB being transported along a regional décollement and thrust northwestward over footwall rocks of the CGB along a penetratively deformed tectonic zone, while a lower crustal wedge may have delaminated the CMB lower crust. Crustal thickness where defined by the seismic data is 42.0–43.5 km in both the CGB and the CMB.


2003 ◽  
Vol 174 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Sébastien Judenherc ◽  
Michel Granet ◽  
Jean-Pierre Brun ◽  
Georges Poupinet

Abstract The Hercynian belt is a continental collision orogen extending from south-west Iberia to the Bohemian Massif in Czech Republic. The successive stages of its formation are dated from 400 to 260 Ma.The Armorican Massif is a preserved segment of this orogen. It presents structures oriented NW-SE, parallel to the general Hercynian trend in this region. The massif is divided into three domains (North, Central, and South-Armorican domains) separated by two main shearzones, the North- and South-Armorican shear zones. As the Armorican Massif escaped from any important tectonic or thermal event since the end of Hercynian times, it is particularly suited for the study of an old collision orogen. Thus, in the framework of the GéoFrance3D-ARMOR2 project, two passive seismological experiments were conducted in 1997 and 1999 in the Armorican Massif. The main goals concerned the characterization of the deep geometry of both shear zones, the understanding of their geodynamic bearing on the long term evolution of the Hercynian belt, the study of the lithospheric deformation, and the 3D imaging of the Champtoceaux nappes.The data allow to model seismic anisotropy and to build a 3D P-wave velocity model beneath the Armorican Massif. Crustal images do not evidence any deep rooting of the Champtoceaux nappes in the lower crust. However, the upper mantle images show a clear signal interpreted as the relic of the northward subduction which lasted until Devonian (≈350 Ma). The results also show that the North-Armorican Shear Zone is limited at depth to the crust and topmost mantle, while the South-Armorican Shear Zone can be traced over the whole lithosphere.The strong velocity contrasts are associated to probable relic thermal anomalies but are also significantly related to chemical anomalies.


Author(s):  
Xin Jin ◽  
Yu-Xiu Zhang ◽  
Donna L. Whitney ◽  
Kai-Jun Zhang ◽  
Natalie H. Raia ◽  
...  

Subduction and exhumation processes, interacting with each other, play a key role in crustal recycling. Downgoing oceanic lithosphere constitutes the dominant input at subduction margins, but subduction erosion, the removal of crustal material from the overriding plate, may add additional ingredients and complexity to the subduction factory. Different exhumation models have been proposed to explain how subducted materials are exhumed and therefore contribute to crustal recycling, e.g., exhumation up the subduction channel versus diapiric rise through the mantle wedge that overlies the subducted plate. The recently discovered Baqing eclogite-bearing high-pressure metamorphic complex, central Tibet, China, provides an excellent opportunity to decode the exhumation process, the origin of subduction-related magmatism, and the crustal structure of the North Qiangtang block, in addition to elucidating processes of crustal recycling. Pressure-temperature-time (P-T-t) paths and zircon U-Pb ages and trace-element compositions for Baqing high-pressure rocks were used to evaluate exhumation processes and to determine the geochemical and tectonic affinity of the Baqing metamorphic complex. The Baqing metamorphic complex is mainly composed of eclogite, gneiss, and schist. It is located between two geologically distinct terranes—the South Qiangtang block, which has early Paleozoic basement, and the North Qiangtang block, which has Proterozoic basement. In the schist, zircon cores with steep heavy rare earth element (HREE) slopes and oscillatory zoning yielded inherited ages that are similar to detrital zircon ages for the South Qiangtang block schist; in contrast, zircon rims with flat HREE slopes yielded metamorphic ages of 224 Ma that are similar to the metamorphic ages obtained for the Baqing eclogite. In contrast, zircons from the gneiss yielded an upper-intercept age of 1033 ± 32 Ma (interpreted as the crystallization age) and a lower-intercept metamorphic age of 198 ± 4 Ma. Field relations indicate that gneiss and eclogite/amphibolite were exhumed together, so the ∼20 m.y. gap between the gneiss and the metabasite metamorphism may indicate a long exhumation duration. In the region, Proterozoic ages of ca. 1000 Ma are known only from the North Qiangtang block; we thus propose that the Baqing gneiss originated from North Qiangtang block Proterozoic basement, which, along with North Qiangtang block Triassic arc magmatic rocks and the discrepancies between ancient and current arc-trench distances, results in estimates of ∼20−170 km of Triassic subduction erosion. Results of P-T analyses show that most eclogite, amphibolite, and schist shared a similar clockwise P-T path, different from that of the gneiss, which records a higher geothermal gradient. The clockwise P-T trajectory, long exhumation duration, lack of significant heating during exhumation, and the South Qiangtang block affinity of the schist (host rock of the Baqing eclogite) are consistent with subduction-channel exhumation rather than diapiric rise through the mantle wedge. Geochemical similarities between the North Qiangtang block Triassic subduction-related rocks and the Baqing gneiss may signal the involvement of unexhumed Baqing metamorphic complex in the recycling of the Qiangtang crust.


Sign in / Sign up

Export Citation Format

Share Document