scholarly journals Predictability of the stratospheric polar vortex breakdown: An ensemble reforecast experiment for the splitting event in January 2009

2016 ◽  
Vol 121 (7) ◽  
pp. 3388-3404 ◽  
Author(s):  
Shunsuke Noguchi ◽  
Hitoshi Mukougawa ◽  
Yuhji Kuroda ◽  
Ryo Mizuta ◽  
Shoukichi Yabu ◽  
...  
2017 ◽  
Vol 30 (18) ◽  
pp. 7125-7139 ◽  
Author(s):  
Nicholas J. Byrne ◽  
Theodore G. Shepherd ◽  
Tim Woollings ◽  
R. Alan Plumb

Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.


2021 ◽  
Author(s):  
Juan J. González-Alemán ◽  
Christian M. Grams ◽  
Blanca Ayarzagüena ◽  
Pablo Zurita-Gotor ◽  
Daniela I. V. Domeisen Domeisen ◽  
...  

<p>Sudden stratospheric warmings (SSWs) are impressive phenomena that consist of a rapid stratospheric polar vortex breakdown. SSWs can have a strong impact on the tropospheric weather and are mainly associated with the negative phases of the Arctic and North Atlantic Oscillations (AO, NAO), and with northern European cold outbreaks, thus causing high societal impact. However, the mechanisms behind the downward impact from the stratosphere are insufficiently understood, especially the role played by the troposphere. In this work, we investigate this coupling and its associated predictability limits by studying the 2018 SSW event.</p><p>By analyzing ECMWF 15-day ensemble forecasts and partitioning them into different weather regimes, we search for possible dynamical tropospheric events that may have favored the downward stratosphere-troposphere coupling during and after the SSW. It is found that two cyclogenesis events were the main drivers of the negative NAO pattern associated with a Greenland Blocking, causing a rapid change from prevailing westerlies into a blocked state in the North Atlantic region. Unless these cyclogenesis events are simulated in the forecasts, the prediction of a Greenland Blocking does not become highly prevalent. No important stratospheric differences between WRs were found. A possible oceanic contribution to this blocked state is also found. This work corroborates that individual synoptic events might constitute a “predictability barrier" for subsequent forecast lead times. It also sheds light, on the specific topic of troposphere-stratosphere coupling.</p>


2017 ◽  
Vol 24 (2) ◽  
pp. 265-278 ◽  
Author(s):  
Víctor José García-Garrido ◽  
Jezabel Curbelo ◽  
Carlos Roberto Mechoso ◽  
Ana María Mancho ◽  
Stephen Wiggins

Abstract. In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow.


2007 ◽  
Vol 24 (12) ◽  
pp. 2048-2061 ◽  
Author(s):  
Albert Hertzog ◽  
Philippe Cocquerez ◽  
René Guilbon ◽  
Jean-Noël Valdivia ◽  
Stéphanie Venel ◽  
...  

Abstract In September and October 2005, the Stratéole/Vorcore campaign flew 27 superpressure balloons from McMurdo, Antarctica, into the stratospheric polar vortex. Long-duration flights were successfully achieved, 16 of those flights lasting for more than 2 months. Most flights were terminated because they flew out of the authorized flight domain or because of energy shortage in the gondola. The atmospheric pressure (1-Pa precision) was measured every minute during the flights, whereas air temperature observations (0.25-K accuracy) and balloon positions (absolute GPS observations, 10-m accuracy) were obtained every 15 min. Fifteen-minute-averaged horizontal velocities of the wind were deduced from the successive balloon positions with a corresponding accuracy ≲0.1 m s−1. The collected dataset (more than 150 000 independent observations) provides a thorough high-resolution sampling of the polar lower stratosphere in the Southern Hemisphere from its wintertime state up to the establishment of the summer circulation in December–January. Most of the balloons stayed inside the vortex until its final breakdown, although a few were ejected toward the midlatitudes in November during filamention events associated with an increase in planetary wave activity. The balloons behaved as quasi-Lagrangian tracers during the first part of the campaign (quiescent vortex) and after the vortex breakdown in early December. Large-amplitude mountain gravity waves were detected over the Antarctic Peninsula and caused one flight termination associated with the sudden burst in the balloon superpressure.


2005 ◽  
Vol 62 (3) ◽  
pp. 735-747 ◽  
Author(s):  
Yvan J. Orsolini ◽  
Cora E. Randall ◽  
Gloria L. Manney ◽  
Douglas R. Allen

Abstract The 2002 Southern Hemisphere final warming occurred early, following an unusually active winter and the first recorded major warming in the Antarctic. The breakdown of the stratospheric polar vortex in October and November 2002 is examined using new satellite observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the European Space Agency (ESA) Environment Satellite (ENVISAT) and meteorological analyses, both high-resolution fields from the European Centre for Medium-Range Weather Forecasts and the coarser Met Office analyses. The results derived from MIPAS observations are compared to measurements and inferences from well-validated solar occultation satellite instruments [Halogen Occultation Experiment (HALOE), Polar Ozone and Aerosol Measurement III (POAM III), and Stratospheric Aerosol and Gas Experiments II and III (SAGE II and III)] and to finescale tracer fields reconstructed by transporting trace gases based on MIPAS or climatological data using a reverse-trajectory method. These comparisons confirm the features in the MIPAS data and the interpretation of the evolution of the flow during the vortex decay revealed by those features. Mapped ozone and water vapor from MIPAS and the analyzed isentropic potential vorticity vividly display the vortex breakdown, which occurred earlier than usual. A large tongue of vortex air was pulled out westward and coiled up in an anticyclone, while the vortex core remnant shrank and drifted eastward and equatorward over the South Atlantic. By roughly mid-November, the vortex remnant at 10 mb had shrunk below scales resolved by the satellite observations, while a vortex core remained in the lower stratosphere.


2006 ◽  
Vol 19 (19) ◽  
pp. 4891-4901 ◽  
Author(s):  
Robert X. Black ◽  
Brent A. McDaniel ◽  
Walter A. Robinson

Abstract The authors perform an observational study of the relation between stratospheric final warmings (SFWs) and the boreal extratropical circulation. SFW events are found to provide a strong organizing influence upon the large-scale circulation of the stratosphere and troposphere during the period of spring onset. In contrast to the climatological seasonal cycle, SFW events noticeably sharpen the annual weakening of high-latitude circumpolar westerlies in both the stratosphere and troposphere. A coherent pattern of significant westerly (easterly) zonal wind anomalies is observed to extend from the stratosphere to the earth’s surface at high latitudes prior to (after) SFW events, coinciding with the polar vortex breakdown. This evolution is associated with a bidirectional dynamical coupling of the stratosphere–troposphere system in which tropospheric low-frequency waves induce annular stratospheric circulation anomalies, which in turn, are followed by annular tropospheric circulation anomalies. The regional tropospheric manifestation of SFW events consists of a North Atlantic Oscillation (NAO)-like phase transition in the near-surface geopotential height field, with height rises over polar latitudes and height falls over the northeast North Atlantic. This lower-tropospheric change pattern is distinct from the climatological seasonal cycle, which closely follows seasonal trends in thermal forcing at the lower boundary. Although broadly similar, the tropospheric anomaly patterns identified in the study do not precisely correspond to the canonical northern annular mode (NAM) and NAO patterns as the primary anomaly centers are retracted northward toward the pole. The results here imply that (i) high-latitude climate may be particularly sensitive to long-term trends in the annual cycle of the stratospheric polar vortex and (ii) improvements in the understanding and simulation of SFW events may benefit medium-range forecasts of spring onset in the extratropics.


2014 ◽  
Vol 71 (7) ◽  
pp. 2335-2353 ◽  
Author(s):  
Lantao Sun ◽  
Gang Chen ◽  
Walter A. Robinson

Abstract This paper investigates the connection between the delay in the final breakdown of the stratospheric polar vortex, the stratospheric final warming (SFW), and Southern Hemisphere climate trends. The authors first analyze Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) and three climate model outputs with different climate forcings. Climate trends appear when there is a delay in the timing of SFWs. When regressed onto the SFW dates (which reflect the anomaly when the SFW is delayed for one standard deviation of its onset dates), the anomaly pattern bears a resemblance to the observed climate trends, for all the model outputs, even without any trends. This suggests that the stratospheric and tropospheric circulations are organized by the timing of SFWs in both the interannual time scale and climate trends because of external forcings. The authors further explore the role of the SFW using a simplified dynamical model in which the ozone depletion is mimicked by a springtime polar stratospheric cooling. The responses of zonal-mean atmospheric circulation, including zonal wind, temperature, and poleward edge of the Hadley cell and the Ferrel cell, are similar to the observed climate trends. The authors divide the years into those in which the SFW is delayed and those in which it is not. The responses for the years in which the SFW is delayed are very similar to the overall response, while the stratosphere is only characterized by the localized cooling for those years in which the SFW is not delayed, with no subsequent downward influence into the troposphere. This suggests that, in order to affect the troposphere, ozone depletion must first delay the SFW so as to induce a deep response in planetary wave drag and the associated eddy-driven circulation.


2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


Sign in / Sign up

Export Citation Format

Share Document