scholarly journals Stratéole/Vorcore—Long-duration, Superpressure Balloons to Study the Antarctic Lower Stratosphere during the 2005 Winter

2007 ◽  
Vol 24 (12) ◽  
pp. 2048-2061 ◽  
Author(s):  
Albert Hertzog ◽  
Philippe Cocquerez ◽  
René Guilbon ◽  
Jean-Noël Valdivia ◽  
Stéphanie Venel ◽  
...  

Abstract In September and October 2005, the Stratéole/Vorcore campaign flew 27 superpressure balloons from McMurdo, Antarctica, into the stratospheric polar vortex. Long-duration flights were successfully achieved, 16 of those flights lasting for more than 2 months. Most flights were terminated because they flew out of the authorized flight domain or because of energy shortage in the gondola. The atmospheric pressure (1-Pa precision) was measured every minute during the flights, whereas air temperature observations (0.25-K accuracy) and balloon positions (absolute GPS observations, 10-m accuracy) were obtained every 15 min. Fifteen-minute-averaged horizontal velocities of the wind were deduced from the successive balloon positions with a corresponding accuracy ≲0.1 m s−1. The collected dataset (more than 150 000 independent observations) provides a thorough high-resolution sampling of the polar lower stratosphere in the Southern Hemisphere from its wintertime state up to the establishment of the summer circulation in December–January. Most of the balloons stayed inside the vortex until its final breakdown, although a few were ejected toward the midlatitudes in November during filamention events associated with an increase in planetary wave activity. The balloons behaved as quasi-Lagrangian tracers during the first part of the campaign (quiescent vortex) and after the vortex breakdown in early December. Large-amplitude mountain gravity waves were detected over the Antarctic Peninsula and caused one flight termination associated with the sudden burst in the balloon superpressure.

2008 ◽  
Vol 26 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. V. Grytsai ◽  
O. M. Evtushevsky ◽  
G. P. Milinevsky

Abstract. Anomalies in the Antarctic total ozone and amplitudes of the quasi-stationary planetary waves in the lower stratosphere temperature during the winter and spring of 1988 and 2002 have been compared. Westward displacement of the quasi-stationary wave (QSW) extremes by 50°–70° relative to the preceding years of the strong stratospheric polar vortex in 1987 and 2001, respectively, was observed. A dependence of the quasi-stationary wave ridge and trough positions on the strength of the westerly zonal wind in the lower stratosphere is shown. Comparison of the QSW amplitude in the lower stratosphere temperature in July and August shows that the amplitude distribution with latitude in August could be considered as a possible indication of the future anomalous warming in Antarctic spring. In August 2002, the QSW amplitude of 10 K at the edge region of the polar vortex (60° S–65° S) preceded the major warming in September, whereas in August 1988, the highest 7 K amplitude at 55° S preceded the large warming in the next months. These results suggest that the peak value of the lower stratosphere temperature QSW amplitude and the peak latitudinal position in late winter can influence the southern polar vortex strength in spring.


2022 ◽  
pp. 1-63

Abstract Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar events (WPV) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere, i.e., a weaker and more contracted Antarctic stratospheric polar vortex. Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere besides the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric scale temperature and precipitation anomalies.


2018 ◽  
Author(s):  
Xue Wu ◽  
Sabine Griessbach ◽  
Lars Hoffmann

Abstract. Volcanic sulfate aerosol is an important source of sulfur for Antarctica where other local sources of sulfur are rare. Mid- and high latitude volcanic eruptions can directly influence the aerosol budget of the polar stratosphere. However, tropical eruptions can also enhance polar aerosol load following long-range transport. In the present work, we analyze the volcanic plume of a tropical eruption, Mount Merapi in October 2010, using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC), Atmospheric Infrared Sounder (AIRS) SO2 observations and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. We investigate the pathway and transport efficiency of the volcanic aerosol from the tropical tropopause layer (TTL) to the lower stratosphere over Antarctica. We first estimated the time- and height-resolved SO2 injection time series over Mount Merapi during the explosive eruption using the AIRS SO2 observations and a backward trajectory approach. Then the SO2 injections were tracked for up to 6 months using the MPTRAC model. The Lagrangian transport simulation of the volcanic plume was compared to MIPAS aerosol observations and showed good agreement. Both of the simulation and the observations presented in this study suggest that a significant amount of aerosols of the volcanic plume from the Merapi eruption was transported from the tropics to the south of 60 °S within one month after the eruption and even further to Antarctica in the following two months. This relatively fast meridional transport of volcanic aerosol was mainly driven by quasi-horizontal mixing from the TTL to the extratropical lower stratosphere, which was facilitated by the weakening of the subtropical jet during the seasonal transition from austral spring to summer and linked to the westerly phase of the quasi-biennial oscillation (QBO). When the plume went to southern high latitudes, the polar vortex was displaced from the south pole, so the volcanic plume was carried to the south pole without penetrating the polar vortex. Based on the model results, the most efficient pathway for the quasi-horizontal mixing was in between the isentropic surfaces of 360 and 430 K. Although only 4 % of the initial SO2 load was transported into the lower stratosphere south of 60 °S, the Merapi eruption contributed about 8800 tons of sulfur to the Antarctic lower stratosphere. This indicates that the long-range transport under favorable meteorological conditions enables tropical volcanic eruptions to be an important remote source of sulfur for the Antarctic stratosphere.


2017 ◽  
Vol 30 (18) ◽  
pp. 7125-7139 ◽  
Author(s):  
Nicholas J. Byrne ◽  
Theodore G. Shepherd ◽  
Tim Woollings ◽  
R. Alan Plumb

Abstract Statistical models of climate generally regard climate variability as anomalies about a climatological seasonal cycle, which are treated as a stationary stochastic process plus a long-term seasonally dependent trend. However, the climate system has deterministic aspects apart from the climatological seasonal cycle and long-term trends, and the assumption of stationary statistics is only an approximation. The variability of the Southern Hemisphere zonal-mean circulation in the period encompassing late spring and summer is an important climate phenomenon and has been the subject of numerous studies. It is shown here, using reanalysis data, that this variability is rendered highly nonstationary by the organizing influence of the seasonal breakdown of the stratospheric polar vortex, which breaks time symmetry. It is argued that the zonal-mean tropospheric circulation variability during this period is best viewed as interannual variability in the transition between the springtime and summertime regimes induced by variability in the vortex breakdown. In particular, the apparent long-term poleward jet shift during the early-summer season can be more simply understood as a delay in the equatorward shift associated with this regime transition. The implications of such a perspective for various open questions are discussed.


2010 ◽  
Vol 10 (8) ◽  
pp. 19175-19194 ◽  
Author(s):  
Y. Tomikawa ◽  
T. Yamanouchi

Abstract. An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.


2018 ◽  
Vol 18 (11) ◽  
pp. 8065-8077 ◽  
Author(s):  
Jonathan Conway ◽  
Greg Bodeker ◽  
Chris Cameron

Abstract. The wintertime stratospheric westerly winds circling the Antarctic continent, also known as the Southern Hemisphere polar vortex, create a barrier to mixing of air between middle and high latitudes. This dynamical isolation has important consequences for export of ozone-depleted air from the Antarctic stratosphere to lower latitudes. The prevailing view of this dynamical barrier has been an annulus compromising steep gradients of potential vorticity (PV) that create a single semi-permeable barrier to mixing. Analyses presented here show that this barrier often displays a bifurcated structure where a double-walled barrier exists. The bifurcated structure manifests as enhanced gradients of PV at two distinct latitudes – usually on the inside and outside flanks of the region of highest wind speed. Metrics that quantify the bifurcated nature of the vortex have been developed and their variation in space and time has been analysed. At most isentropic levels between 395 and 850 K, bifurcation is strongest in mid-winter and decreases dramatically during spring. From August onwards a distinct structure emerges, where elevated bifurcation remains between 475 and 600 K, and a mostly single-walled barrier occurs at other levels. While bifurcation at a given level evolves from month to month, and does not always persist through a season, interannual variations in the strength of bifurcation display coherence across multiple levels in any given month. Accounting for bifurcation allows the region of reduced mixing to be better characterised. These results suggest that improved understanding of cross-vortex mixing requires consideration of the polar vortex not as a single mixing barrier but as a barrier with internal structure that is likely to manifest as more complex gradients in trace gas concentrations across the vortex barrier region.


2016 ◽  
Vol 121 (7) ◽  
pp. 3388-3404 ◽  
Author(s):  
Shunsuke Noguchi ◽  
Hitoshi Mukougawa ◽  
Yuhji Kuroda ◽  
Ryo Mizuta ◽  
Shoukichi Yabu ◽  
...  

It has been suggested on the basis of certain chemical observations that the wintertime stratospheric polar vortex might act as a chemical processor, or flow reactor, through which large amounts of air - of the order of one vortex mass per month or three vortex masses per winter - flow downwards and then outwards to middle latitudes in the lower stratosphere. If such a flow were to exist, then most of the air involved would become chemically ‘activated’, or primed for ozone destruction, while passing through the low temperatures of the vortex where fast heterogeneous reactions can take place on polar-stratospheric-cloud particles. There could be serious implications for our understanding of ozone-hole chemistry and for midlatitude ozone loss, both in the Northern and in the Southern Hemisphere. This paper will briefly assess current fluid-dynamical thinking about flow through the vortex. It is concluded that the vortex typically cannot sustain an average throughput much greater than about a sixth of a vortex mass per month, or half a vortex mass per winter, unless a large and hitherto unknown mean circumferential force acts persistently on the vortex in an eastward or ‘spin-up’ sense, prograde with the Earth’s rotation. By contrast, the ‘sub-vortex’ below pressure-altitudes of about 70 hPa (more precisely, on isentropic surfaces below potential temperatures of about 400 K) is capable of relatively large mass throughput depending, however, on tropospheric weather beneath, concerning which observational data are sparse.


2017 ◽  
Author(s):  
Jonathan Conway ◽  
Greg Bodeker ◽  
Chris Cameron

Abstract. The winter-time stratospheric westerly winds circling the Antarctic continent, also known as the Southern Hemisphere polar vortex, create a barrier to mixing of air between middle and high latitudes. This dynamical isolation has important consequences for export of ozone-depleted air from the Antarctic stratosphere to lower latitudes. The prevailing view of this dynamical barrier has been an annulus compromising steep gradients of potential vorticity (PV) that create a single semi-permeable barrier to mixing. Analyses presented here show that this barrier often displays a bifurcated structure where a doubled-walled barrier exists. The bifurcated structure manifests as enhanced gradients of PV at two distinct latitudes – usually on the inside and outside flanks of the region of highest wind speed. Metrics that quantify the bifurcated nature of the vortex have been developed and their variation in space and time has been analysed. At most isentropic levels between 370 K and 850 K, bifurcation is strongest in winter and reduces dramatically during spring. From August onwards a distinct structure emerges, where elevated bifurcation remains between 475 K and 600 K, and a mostly single walled barrier occurs at other levels. While bifurcation at a given level evolves from month to month, and does not always persist through a season, inter-annual variations in the strength of bifurcation display coherence across multiple levels in any given month. Accounting for bifurcation allows the region of reduced mixing to be better characterized. These results suggest that improved understanding of cross-vortex mixing requires consideration of the polar vortex not as a single mixing barrier, but as a barrier with internal structure that is likely to manifest as more complex gradients in trace gas concentrations across the vortex barrier region.


Sign in / Sign up

Export Citation Format

Share Document