scholarly journals Potential tropical Atlantic impacts on Pacific decadal climate trends

2016 ◽  
Vol 43 (13) ◽  
pp. 7143-7151 ◽  
Author(s):  
Y. Chikamoto ◽  
T. Mochizuki ◽  
A. Timmermann ◽  
M. Kimoto ◽  
M. Watanabe
2001 ◽  
Vol 14 (5) ◽  
pp. 638-655 ◽  
Author(s):  
Richard Seager ◽  
Yochanan Kushnir ◽  
Ping Chang ◽  
Naomi Naik ◽  
Jennifer Miller ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael E. Mann ◽  
Byron A. Steinman ◽  
Sonya K. Miller

AbstractFor several decades the existence of interdecadal and multidecadal internal climate oscillations has been asserted by numerous studies based on analyses of historical observations, paleoclimatic data and climate model simulations. Here we use a combination of observational data and state-of-the-art forced and control climate model simulations to demonstrate the absence of consistent evidence for decadal or longer-term internal oscillatory signals that are distinguishable from climatic noise. Only variability in the interannual range associated with the El Niño/Southern Oscillation is found to be distinguishable from the noise background. A distinct (40–50 year timescale) spectral peak that appears in global surface temperature observations appears to reflect the response of the climate system to both anthropogenic and natural forcing rather than any intrinsic internal oscillation. These findings have implications both for the validity of previous studies attributing certain long-term climate trends to internal low-frequency climate cycles and for the prospect of decadal climate predictability.


2015 ◽  
Vol 166 ◽  
pp. 74-82 ◽  
Author(s):  
Angelo F. Bernardino ◽  
Sérgio A. Netto ◽  
Paulo R. Pagliosa ◽  
Francisco Barros ◽  
Ronaldo A. Christofoletti ◽  
...  

2002 ◽  
Vol 29 (23) ◽  
pp. 48-1-48-4 ◽  
Author(s):  
Yochanan Kushnir ◽  
Richard Seager ◽  
Jennifer Miller ◽  
John C. H. Chiang

2021 ◽  
Author(s):  
Mariam Tidiga ◽  
Gwenaël Berthet ◽  
Fabrice Jegou ◽  
Adriana Bossolasco ◽  
Corinna Kloss ◽  
...  

<p>The cumulative impacts of frequent moderate-magnitude eruptions on stratospheric aerosols were identified among the factors in recent decadal climate trends. Moderate volcanic eruptions are a recurrent source of sulfur dioxide (SO2) in the Upper Troposphere and Lower Stratosphere (UTLS) region and the resulting formation of sulfuric acid aerosol particles from the SO2 emitted provides sites for chemical reactions leading to enhancement of stratospheric optical depth (SAOD) and ozone depletion. Modelling properly the volcanic aerosol content and its evolution in this region is important for radiative impact issues. In this work, we explore the variability of the tropical UTLS aerosol content between 2013 and 2019, a period which was particularly impacted by moderate tropical and mid-latitude volcanic eruptions. For that purpose, space-borne observations from OMPS (version 2, datasets from GES DISC), and IASI, together with simulations by the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA), are used. Different model sensitive experiments, particularly for the injection altitude and timing, have been conducted to evaluate how the model captures the aerosol plume in terms of content, optical and microphysical properties, transport and residence time. We find that the decay of the Calbuco and Kelud plumes observed by OMPS version 2 is well reproduced by the model. Comparisons with unique datasets in the tropical southern hemisphere from the NDACC Maïdo observatory (Reunion Island, France, 20.5°S, 55.5°E) show good agreement between the lidar SAOD observations and WACCM-CARMA SAOD simulations although we observe a difference in the altitude of the maximum aerosol concentration between the model and the in situ profile after Calbuco eruption in April 2015. A particular focus is also made on recent eruptions like Raikoke, Ambae and Ulawun. The plume of the Ambae volcano (15°S, 167°E) which erupted in July 2018 is shown to propagate to the northern hemisphere with some influence until summer 2019 in the Asian monsoon region. For the year 2019, we investigate how the Ulawun (5°S, 151°E; ~0.14 Tg of SO2) tropical eruption and the Raikoke mid-latitude eruption (48°N, 153°E; ~1.5Tg of SO2), have influenced the aerosol burden in the tropics.</p>


Sign in / Sign up

Export Citation Format

Share Document