scholarly journals Empirical estimates and theoretical predictions of the shorting factor for the THEMIS double-probe electric field instrument

2016 ◽  
Vol 121 (7) ◽  
pp. 6223-6233 ◽  
Author(s):  
S. Califf ◽  
C. M. Cully
2016 ◽  
pp. 137-165 ◽  
Author(s):  
P.-A. Lindqvist ◽  
G. Olsson ◽  
R. B. Torbert ◽  
B. King ◽  
M. Granoff ◽  
...  

2014 ◽  
Vol 199 (1-4) ◽  
pp. 137-165 ◽  
Author(s):  
P.-A. Lindqvist ◽  
G. Olsson ◽  
R. B. Torbert ◽  
B. King ◽  
M. Granoff ◽  
...  

2014 ◽  
Vol 3 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Y. V. Khotyaintsev ◽  
P.-A. Lindqvist ◽  
C. M. Cully ◽  
A. I. Eriksson ◽  
M. André

Abstract. Double-probe electric field instrument with long wire booms is one of the most popular techniques for in situ measurement of electric fields in plasmas on spinning spacecraft platforms, which have been employed on a large number of space missions. Here we present an overview of the calibration procedure used for the Electric Field and Wave (EFW) instrument on Cluster, which involves spin fits of the data and correction of several offsets. We also describe the procedure for the offset determination and present results for the long-term evolution of the offsets.


1996 ◽  
Vol 43 (6) ◽  
pp. 2767-2771 ◽  
Author(s):  
B. Johlander ◽  
R. Harboe-Sorensen ◽  
G. Olsson ◽  
L. Bylander

2021 ◽  
Author(s):  
Mats André ◽  
Anders I. Eriksson ◽  
Yuri V. Khotyaintsev ◽  
Sergio Toledo-Redondo

<p>Wakes behind scientific spacecraft caused by supersonic drifting ions is common in collisionless plasmas. Such wakes change the local plasma conditions and disturb in situ observations of the geophysical plasma parameters. We concentrate on observations of the electric field with double-probe instruments. Sometimes the wake effects are caused by the spacecraft body, are minor and easy to detect, and can be compensated for in a reasonable way. We show an example from the Cluster spacecraft in the solar wind. Sometimes the effects are caused by an electrostatic structure around a positively charged spacecraft causing an enhanced wake and major effects on the local plasma. Here observations of the geophysical electric field with the double-probe technique becomes impossible. Rather, the wake can be used to detect the presence of cold positive ions. Together with other instruments, also the cold ion flux can be estimated. We discuss such examples from the Cluster spacecraft in the magnetospheric lobes. For an intermediate range of parameters, when the drift energy of the ions is comparable to the equivalent charge of the spacecraft, also the charged wire booms of a double-probe instrument must be taken into account to extract useful information from the observations. We show an example from the MMS spacecraft near the magnetopause. With understanding of the physics causing wakes behind spacecraft, the local effects can sometimes be compensated for. When this is not possible, sometimes entirely new geophysical parameters can be estimated. An example is the flux of cold positive ions, constituting a major part of the mass outflow from planet Earth, using electric and magnetic field instruments on a spacecraft charged due to photoionization</p><p> </p>


1996 ◽  
Vol 14 (2) ◽  
pp. 191-200 ◽  
Author(s):  
P.-Y. Diloy ◽  
A. Robineau ◽  
J. Lilensten ◽  
P.-L. Blelly ◽  
J. Fontanari

Abstract. It has been previously demonstrated that a two-ion (O+ and H+) 8-moment time-dependent fluid model was able to reproduce correctly the ionospheric structure in the altitude range probed by the EISCAT-VHF radar. In the present study, the model is extended down to the E-region where molecular ion chemistry (NO+ and O+2, essentially) prevails over transport; EISCAT-UHF observations confirmed previous theoretical predictions that during events of intense E×B induced convection drifts, molecular ions (mainly NO+) predominate over O+ ions up to altitudes of 300 km. In addition to this extension of the model down to the E-region, the ionization and heating resulting from both solar insolation and particle precipitation is now taken into account in a consistent manner through a complete kinetic transport code. The effects of E×B induced convection drifts on the E- and F-region are presented: the balance between O+ and NO+ ions is drastically affected; the electric field acts to deplete the O+ ion concentration. The [NO+]/[O+] transition altitude varies from 190 km to 320 km as the perpendicular electric field increases from 0 to 100 mV m-1. An interesting additional by-product of the model is that it also predicts the presence of a noticeable fraction of N+ ions in the topside ionosphere in good agreement with Retarding Ion Mass Spectrometer measurements onboard Dynamic Explorer.


Sign in / Sign up

Export Citation Format

Share Document