scholarly journals Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

2018 ◽  
Vol 123 (2) ◽  
pp. 1191-1199 ◽  
Author(s):  
R. Benacquista ◽  
D. Boscher ◽  
S. Rochel ◽  
V. Maget

2021 ◽  
Author(s):  
Ravindra Desai ◽  
Jonathan Eastwood ◽  
Joseph Eggington ◽  
Mervyn Freeman ◽  
Martin Archer ◽  
...  

<p>Fast-forward interplanetary interplanetary shocks, as occur at the forefront of interplanetary coronal mass ejections and at corotating interaction regions, can rapidly compress the magnetopause inside the drift paths of electrons and protons, and expose geosynchonous satellites directly to the solar wind.  Here, we use Gorgon Global-MHD simulations to study the response of the magnetopause to different fast-forward interplanetary shocks, with strengths extending from the median shocks observed during solar minimum up to that representing an extreme space weather event. The subsequent magnetopause response can be characterised by three distinct phases; an initial acceleration as inertial forces are overcome, a rapid compression well-represented by a power law, and large-scale damped oscillatory motion of the order of an Earth radius, prior to reaching pressure-balance equilibrium. The subsolar magnetopause is found to oscillate with notable frequencies in the range of 2–13 mHz over several periods of diminishing amplitudes.  These results provide an explanation for similar large-scale magnetopause oscillations observed previously during the extreme events of August 1972 and March 1991 and highlight why static magnetopause models break down during periods of strong solar wind driving.</p>





2013 ◽  
Vol 558 ◽  
pp. A85 ◽  
Author(s):  
G. Verbanac ◽  
S. Živković ◽  
B. Vršnak ◽  
M. Bandić ◽  
T. Hojsak


2020 ◽  
Vol 494 (2) ◽  
pp. 2498-2508 ◽  
Author(s):  
Zubair I Shaikh ◽  
Anil N Raghav ◽  
Geeta Vichare ◽  
Ankush Bhaskar ◽  
Wageesh Mishra

ABSTRACT Planar magnetic structures (PMS) are often observed in sheath regions driven by interplanetary coronal mass ejections (ICMEs) and in corotating interaction regions (CIRs). Here, we study plasma properties statistically within planar and non-planar ICME sheath regions using in situ data from the Advanced Composition Explore (ACE) spacecraft. The study includes 420 ICME-driven sheaths from 1998–2017. We found that 146 ($\sim 35{{\ \rm per\ cent}}$) ICME-driven sheaths are planar, whereas 274 ($\sim 65{{\ \rm per\ cent}}$) are non-planar. This study found that the average plasma temperature, density, speed, plasma beta, thermal pressure and magnetic pressure are higher in planar sheaths than in non-planar sheaths. This implies that high compression plays an essential role in the formation of PMS in sheath regions. Interestingly, our analysis reveals explicitly that the strength of the southward/northward magnetic field component is almost double in planar sheath regions compared with non-planar sheath regions. This suggests that planar sheaths are more geoeffective than non-planar sheaths.



2021 ◽  
Vol 923 (1) ◽  
pp. 4
Author(s):  
Dan Zhao ◽  
Jianpeng Guo ◽  
Hui Huang ◽  
Haibo Lin ◽  
Yichun Hong ◽  
...  

Abstract The measurements from the Mars Atmosphere and Volatile EvolutioN spacecraft, in orbit around Mars, are utilized to investigate interplanetary coronal mass ejections (ICMEs) near 1.52 au. We identify 24 ICMEs from 2014 December 6 to 2019 February 21. The ICME list is used to examine the statistical properties of ICMEs. On average, the magnetic field strength of 5.99 nT in ICMEs is higher than that of 5.38 nT for stream interaction regions (SIRs). The density of 5.27 cm−3 for ICMEs is quite comparable to that of 5.17 cm−3 for SIRs, the velocity of 394.7 km s−1 for ICMEs is slightly lower than that of 432.8 km s−1 for SIRs, and the corresponding dynamic pressure of 1.34 nPa for ICMEs is smaller than that of 1.50 nPa for SIRs. Using existing databases of ICMEs at 1 au for the same time period, we compare ICME average properties at 1.52 au with those at 1 au. The averages of the characteristic quantities decrease by a factor of 1.1–1.7 from 1 to 1.52 au. In addition, we analyze an unusual space weather event associated with the ICME on 2015 March 9–10, and propose that the extremely strong dynamic pressure with a maximum of ∼18 nPa on March 8 is caused by the combined effects of the enhanced density inside a heliospheric plasma sheet (HPS), the compression of the HPS by the forward shock, and the high velocity of the sheath ahead of the ICME.



Solar Physics ◽  
2015 ◽  
Vol 290 (8) ◽  
pp. 2291-2309 ◽  
Author(s):  
T. M. Conlon ◽  
S. E. Milan ◽  
J. A. Davies ◽  
A. O. Williams


Sign in / Sign up

Export Citation Format

Share Document