scholarly journals Interplanetary Coronal Mass Ejections from MAVEN Orbital Observations at Mars

2021 ◽  
Vol 923 (1) ◽  
pp. 4
Author(s):  
Dan Zhao ◽  
Jianpeng Guo ◽  
Hui Huang ◽  
Haibo Lin ◽  
Yichun Hong ◽  
...  

Abstract The measurements from the Mars Atmosphere and Volatile EvolutioN spacecraft, in orbit around Mars, are utilized to investigate interplanetary coronal mass ejections (ICMEs) near 1.52 au. We identify 24 ICMEs from 2014 December 6 to 2019 February 21. The ICME list is used to examine the statistical properties of ICMEs. On average, the magnetic field strength of 5.99 nT in ICMEs is higher than that of 5.38 nT for stream interaction regions (SIRs). The density of 5.27 cm−3 for ICMEs is quite comparable to that of 5.17 cm−3 for SIRs, the velocity of 394.7 km s−1 for ICMEs is slightly lower than that of 432.8 km s−1 for SIRs, and the corresponding dynamic pressure of 1.34 nPa for ICMEs is smaller than that of 1.50 nPa for SIRs. Using existing databases of ICMEs at 1 au for the same time period, we compare ICME average properties at 1.52 au with those at 1 au. The averages of the characteristic quantities decrease by a factor of 1.1–1.7 from 1 to 1.52 au. In addition, we analyze an unusual space weather event associated with the ICME on 2015 March 9–10, and propose that the extremely strong dynamic pressure with a maximum of ∼18 nPa on March 8 is caused by the combined effects of the enhanced density inside a heliospheric plasma sheet (HPS), the compression of the HPS by the forward shock, and the high velocity of the sheath ahead of the ICME.

2020 ◽  
Author(s):  
Jingnan Guo ◽  
Robert Wimmer-Schweingruber ◽  
Mateja Dumbovic ◽  
Bernd Heber ◽  
Yuming Wang

<p>Forbush decreases are depressions in the galactic cosmic rays (GCRs) which are mostly caused by the modulations of interplanetary coronal mass ejections (ICMEs) and also sometimes by stream/corotating interaction regions (SIRs/CIRs). Forbush decreases have been studied extensively using neutron monitors at Earth and have been recently, for the first time, measured on the surface of another planet - Mars by the Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity. The modulation of the GCR particles by heliospheric transients in space is energy-dependent and afterwards these particles are also interacting with the Martian atmosphere with the interaction process depending on the particle type and energy. In order to study the space weather environment near Mars using the ground-measured Forbush decreases, it is important to understand and quantify the energy-dependent modulation of the GCR particles by not only the pass-by heliospheric disturbances but also the Martian atmosphere. In this study, we develop a model which combines the heliospheric modulation of GCRs and the atmospheric modification of such modulated GCR spectra to quantify the amplitudes of the Forbush decreases at Mars: both on ground and in the interplanetary space near Mars during the pass-by of an ICME/SIR. The modeled results are in good agreement when compared to studies of Forbush decreases caused by ICMEs/SIRs measured by MSL on the surface of Mars and by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit.  This supports the validity of both the Forbush decrease description and the Martian atmospheric transport models.  Our model can be potentially used to understand the property of ICMEs and SIRs passing Mars.</p>


2021 ◽  
Author(s):  
Ravindra Desai ◽  
Jonathan Eastwood ◽  
Joseph Eggington ◽  
Mervyn Freeman ◽  
Martin Archer ◽  
...  

<p>Fast-forward interplanetary interplanetary shocks, as occur at the forefront of interplanetary coronal mass ejections and at corotating interaction regions, can rapidly compress the magnetopause inside the drift paths of electrons and protons, and expose geosynchonous satellites directly to the solar wind.  Here, we use Gorgon Global-MHD simulations to study the response of the magnetopause to different fast-forward interplanetary shocks, with strengths extending from the median shocks observed during solar minimum up to that representing an extreme space weather event. The subsequent magnetopause response can be characterised by three distinct phases; an initial acceleration as inertial forces are overcome, a rapid compression well-represented by a power law, and large-scale damped oscillatory motion of the order of an Earth radius, prior to reaching pressure-balance equilibrium. The subsolar magnetopause is found to oscillate with notable frequencies in the range of 2–13 mHz over several periods of diminishing amplitudes.  These results provide an explanation for similar large-scale magnetopause oscillations observed previously during the extreme events of August 1972 and March 1991 and highlight why static magnetopause models break down during periods of strong solar wind driving.</p>


2018 ◽  
Vol 611 ◽  
pp. A79 ◽  
Author(s):  
Jingnan Guo ◽  
Robert Lillis ◽  
Robert F. Wimmer-Schweingruber ◽  
Cary Zeitlin ◽  
Patrick Simonson ◽  
...  

The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.


2020 ◽  
Author(s):  
Consuelo Cid ◽  
Carlos Larrodera ◽  
Elena Saiz

<p>The boundaries of interplanetary coronal mass ejections (ICMEs) are commonly established based on the magnetic field smoothness and/or the low temperature, when compared to normal solar wind. Based on the analysis of the ICME on 2015 January 6-7, observed by Wind and ACE spacecraft, Cid et al. (2016) proposed compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs. Having as a starting point the ICMEs catalogues from Jian et al. (2006) and Richardson and Cane (2010), and the Wind spacecraft ICME catalogue on the NASA web site, we have compared the boundaries of all ICMEs observed by the ACE spacecraft attending to different signatures. This contribution shows the results of the study.</p>


2019 ◽  
Vol 626 ◽  
pp. A122 ◽  
Author(s):  
C. Scolini ◽  
L. Rodriguez ◽  
M. Mierla ◽  
J. Pomoell ◽  
S. Poedts

Context. Coronal mass ejections (CMEs) are the primary source of strong space weather disturbances at Earth. Their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic fields, for which reliable predictions at Earth are not possible with traditional cone CME models. Aims. We study two well-observed Earth-directed CMEs using the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) model, testing for the first time the predictive capabilities of a linear force-free spheromak CME model initialised using parameters derived from remote-sensing observations. Methods. Using observation-based CME input parameters, we performed magnetohydrodynamic simulations of the events with EUHFORIA, using the cone and spheromak CME models. Results. Simulations show that spheromak CMEs propagate faster than cone CMEs when initialised with the same kinematic parameters. We interpret these differences as the result of different Lorentz forces acting within cone and spheromak CMEs, which lead to different CME expansions in the heliosphere. Such discrepancies can be mitigated by initialising spheromak CMEs with a reduced speed corresponding to the radial speed only. Results at Earth provide evidence that the spheromak model improves the predictions of B (Bz) by up to 12–60 (22–40) percentage points compared to a cone model. Considering virtual spacecraft located within ±10° around Earth, B (Bz) predictions reach 45–70% (58–78%) of the observed peak values. The spheromak model shows inaccurate predictions of the magnetic field parameters at Earth for CMEs propagating away from the Sun-Earth line. Conclusions. The spheromak model successfully predicts the CME properties and arrival time in the case of strictly Earth-directed events, while modelling CMEs propagating away from the Sun-Earth line requires extra care due to limitations related to the assumed spherical shape. The spatial variability of modelling results and the typical uncertainties in the reconstructed CME direction advocate the need to consider predictions at Earth and at virtual spacecraft located around it.


2022 ◽  
Vol 924 (1) ◽  
pp. L6
Author(s):  
Christian Möstl ◽  
Andreas J. Weiss ◽  
Martin A. Reiss ◽  
Tanja Amerstorfer ◽  
Rachel L. Bailey ◽  
...  

Abstract We report the result of the first search for multipoint in situ and imaging observations of interplanetary coronal mass ejections (ICMEs) starting with the first Solar Orbiter (SolO) data in 2020 April–2021 April. A data exploration analysis is performed including visualizations of the magnetic-field and plasma observations made by the five spacecraft SolO, BepiColombo, Parker Solar Probe (PSP), Wind, and STEREO-A, in connection with coronagraph and heliospheric imaging observations from STEREO-A/SECCHI and SOHO/LASCO. We identify ICME events that could be unambiguously followed with the STEREO-A heliospheric imagers during their interplanetary propagation to their impact at the aforementioned spacecraft and look for events where the same ICME is seen in situ by widely separated spacecraft. We highlight two events: (1) a small streamer blowout CME on 2020 June 23 observed with a triple lineup by PSP, BepiColombo and Wind, guided by imaging with STEREO-A, and (2) the first fast CME of solar cycle 25 (≈1600 km s−1) on 2020 November 29 observed in situ by PSP and STEREO-A. These results are useful for modeling the magnetic structure of ICMEs and the interplanetary evolution and global shape of their flux ropes and shocks, and for studying the propagation of solar energetic particles. The combined data from these missions are already turning out to be a treasure trove for space-weather research and are expected to become even more valuable with an increasing number of ICME events expected during the rise and maximum of solar cycle 25.


2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


Sign in / Sign up

Export Citation Format

Share Document