scholarly journals A Case Study of Low-Level Jets in Yerevan Simulated by the WRF Model

2018 ◽  
Vol 123 (1) ◽  
pp. 300-314 ◽  
Author(s):  
Artur Gevorgyan
Keyword(s):  
2020 ◽  
Author(s):  
Xiaoli G. Larsén ◽  
Jana Fischereit

Abstract. While the wind farm parameterization by Fitch et al. (2012) in Weather Research and Forecasting (WRF) model has been used and evaluated frequently, the Explicit Wake Parameterization (EWP) by Volker et al. (2015) is less well explored. The openly available high frequency flight measurements from Bärfuss et al. (2019) provide an opportunity to directly compare the simulation results from the EWP and Fitch scheme with in situ measurements. In doing so, this study aims to compliment the recent study by Siedersleben et al. (2020) by (1) comparing the EWP and Fitch schemes in terms of turbulent kinetic energy (TKE) and velocity deficit, together with FINO 1 measurements and Synthetic Aperture Radar (SAR) data and (2) exploring the interactions of the wind farm with Low Level Jets. Both the Fitch and the EWP schemes can capture the mean wind field in the presence of the wind farm consistently and well. However, their skill is limited in capturing the flow acceleration along the farm edge. TKE in the EWP scheme is significantly underestimated, suggesting that an explicit turbine-induced TKE source should be included in addition to the implicit source from shear. The position of the LLJ nose and the shear beneath the jet nose are modified by the presence of wind farms.


2021 ◽  
Vol 14 (6) ◽  
pp. 3141-3158
Author(s):  
Xiaoli G. Larsén ◽  
Jana Fischereit

Abstract. While the wind farm parameterization by Fitch et al. (2012) in the Weather Research and Forecasting (WRF) model has been used and evaluated frequently, the explicit wake parameterization (EWP) by Volker et al. (2015) is less well explored. The openly available high-frequency flight measurements from Bärfuss et al. (2019a) provide an opportunity to directly compare the simulation results from the EWP and Fitch scheme with in situ measurements. In doing so, this study aims to complement the recent study by Siedersleben et al. (2020) by (1) comparing the EWP and Fitch schemes in terms of turbulent kinetic energy (TKE) and velocity deficit, together with FINO 1 measurements and synthetic aperture radar (SAR) data, and (2) exploring the interactions of the wind farm with low-level jets (LLJs). This is done using a bug-fixed WRF version that includes the correct TKE advection, following Archer et al. (2020). Both the Fitch and the EWP schemes can capture the mean wind field in the presence of the wind farm consistently and well. TKE in the EWP scheme is significantly underestimated, suggesting that an explicit turbine-induced TKE source should be included in addition to the implicit source from shear. The value of the correction factor for turbine-induced TKE generation in the Fitch scheme has a significant impact on the simulation results. The position of the LLJ nose and the shear beneath the jet nose are modified by the presence of wind farms.


2020 ◽  
Author(s):  
Jeanie A. Aird ◽  
Rebecca J. Barthelmie ◽  
Tristan J. Shepherd ◽  
Sara C. Pryor

Abstract. Output from high resolution simulations with the Weather Research and Forecasting (WRF) model are analyzed to characterize local low level jets (LLJ) over Iowa. Analyses using a detection algorithm wherein the wind speed above and below the jet maximum must be below 80 % of the jet wind speed within a vertical window of approximately 20 m–530 m a.g.l. indicate the presence of a LLJ in at least one of the 14700 4 km by 4 km grid cells over Iowa on 98 % of nights. Nocturnal LLJ are most frequently associated with stable stratification and low TKE and hence are more frequent during the winter months. The spatiotemporal mean LLJ maximum (jet core) wind speed is 9.55 ms−1 and the mean height is 182 m. Locations of high LLJ frequency and duration across the state are seasonally varying with a mean duration of 3.5 hours. LLJ are most frequent in the topographically complex northwest of the state in winter, and in the flatter northeast of the state in spring. Sensitivity of LLJ characteristics to the: i) LLJ definition and ii) vertical resolution at which the WRF output is sampled are examined. LLJ definitions commonly used in LLJ literature are considered in the first sensitivity analysis. These sensitivity analyses indicate that LLJ characteristics are highly variable with LLJ definition. Further, when the model output is down-sampled to lower vertical resolution, the maximum LLJ wind speed and mean height decrease, but spatial distributions of regions of high frequency and duration are conserved.


2006 ◽  
Vol 45 (1) ◽  
pp. 194-209 ◽  
Author(s):  
Da-Lin Zhang ◽  
Shunli Zhang ◽  
Scott J. Weaver

Abstract Although considerable research has been conducted to study the characteristics of the low-level jets (LLJs) over the Great Plains states, little is known about the development of LLJs over the Mid-Atlantic states. In this study, the Mid-Atlantic LLJ and its associated characteristics during the warm seasons of 2001 and 2002 are documented with both the wind profiler data and the daily real-time model forecast products. A case study with three model sensitivity simulations is performed to gain insight into the three-dimensional structures and evolution of an LLJ and the mechanisms by which it developed. It is found that the Mid-Atlantic LLJ, ranging from 8 to 23 m s−1, appeared at an average altitude of 670 m and on 15–25 days of each month. About 90% of the 160 observed LLJ events occurred between 0000 and 0600 LST, and about 60% had southerly to westerly directions. Statistically, the real-time forecasts capture most of the LLJ events with nearly the right timing, intensity, and altitude, although individual forecasts may not correspond to those observed. For a selected southwesterly LLJ case, both the observations and the control simulation exhibit a pronounced diurnal cycle of horizontal winds in the lowest 1.5 km. The simulation shows that the Appalachian Mountains tend to produce a sloping mixed layer with northeasterly thermal winds during the daytime and reversed thermal winds after midnight. With additional thermal contrast effects associated with the Chesapeake Bay and the Atlantic Ocean, the daytime low-level winds vary significantly from the east coast to the mountainous regions. The LLJ after midnight tends to be peaked preferentially around 77.5°W near the middle portion of the sloping terrain, and it decreases eastward as a result of the opposite thermal gradient across the coastline from the mountain-generated thermal gradient. Although the Mid-Atlantic LLJ is much weaker and less extensive than that over the Great Plains states, it has a width of 300–400 km (to its half-peak value) and a length scale of more than 1500 km, following closely the orientation of the Appalachians. Sensitivity simulations show that eliminating the surface heat fluxes produces the most significant impact on the development of the LLJ, then topography and the land–sea contrast, with its area-averaged intensity reduced from 12 m s−1 to about 6, 9, and 10 m s−1, respectively.


Author(s):  
Aristofanis Tsiringakis ◽  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Gert-Jan Steeneveld

AbstractUnderstanding the physical processes that affect the turbulent structure of the nocturnal urban boundary layer (UBL) is essential for improving forecasts of air quality and the air temperature in urban areas. Low-level jets (LLJs) have been shown to affect turbulence in the nocturnal UBL. We investigate the interaction of a mesoscale LLJ with the UBL during a 60-h case study. We use observations from two Doppler lidars and results from two high-resolution numerical-weather-prediction models (Weather Research and Forecasting model, and the Met Office Unified Model for limited-area forecasts for the U.K.) to study differences in the occurrence frequency, height, wind speed, and fall-off of LLJs between an urban (London, U.K.) and a rural (Chilbolton, U.K.) site. The LLJs are elevated ($$\approx $$ ≈ 70 m) over London, due to the deeper UBL, while the wind speed and fall-off are slightly reduced with respect to the rural LLJ. Utilizing two idealized experiments in the WRF model, we find that topography strongly affects LLJ characteristics, but there is still a substantial urban influence. Finally, we find that the increase in wind shear under the LLJ enhances the shear production of turbulent kinetic energy and helps to maintain the vertical mixing in the nocturnal UBL.


2017 ◽  
Vol 155 ◽  
pp. 199-209 ◽  
Author(s):  
Cléo Q. Dias-Junior ◽  
Nelson Luís Dias ◽  
José D. Fuentes ◽  
Marcelo Chamecki

2021 ◽  
Vol 6 (4) ◽  
pp. 1015-1030
Author(s):  
Jeanie A. Aird ◽  
Rebecca J. Barthelmie ◽  
Tristan J. Shepherd ◽  
Sara C. Pryor

Abstract. Output from 6 months of high-resolution simulations with the Weather Research and Forecasting (WRF) model are analyzed to characterize local low-level jets (LLJs) over Iowa for winter and spring in the contemporary climate. Low-level jets affect rotor plane aerodynamic loading, turbine structural loading and turbine performance, and thus accurate characterization and identification are pertinent. Analyses using a detection algorithm wherein the wind speed above and below the jet maximum must be below 80 % of the jet wind speed within a vertical window of approximately 20–530 m a.g.l. (above ground level) indicate the presence of an LLJ in at least one of the 14 700 4 km×4 km grid cells over Iowa on 98 % of nights. Nocturnal LLJs are most frequently associated with stable stratification and low turbulent kinetic energy (TKE) and hence are more frequent during the winter months. The spatiotemporal mean LLJ maximum (jet core) wind speed is 9.55 m s−1, and the mean height is 182 m. Locations of high LLJ frequency and duration across the state are seasonally varying, with a mean duration of 3.5 h. The highest frequency occurs in the topographically complex northwest of the state in winter and in the flatter northeast of the state in spring. Sensitivity of LLJ characteristics to the (i) LLJ definition and (ii) vertical resolution at which the WRF output is sampled is examined. LLJ definitions commonly used in the literature are considered in the first sensitivity analysis. These sensitivity analyses indicate that LLJ characteristics are highly variable with definition. Use of different definitions identifies both different frequencies of LLJs and different LLJ events. Further, when the model output is down-sampled to lower vertical resolution, the mean jet core wind speed height decreases, but spatial distributions of regions of high frequency and duration are conserved. Implementation of a polynomial interpolation to extrapolate down-sampled output to full-resolution results in reduced sensitivity of LLJ characteristics to down-sampling.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 445
Author(s):  
Jeanie A. Aird ◽  
Rebecca J. Barthelmie ◽  
Tristan J. Shepherd ◽  
Sara C. Pryor

Two years of high-resolution simulations conducted with the Weather Research and Forecasting (WRF) model are used to characterize the frequency, intensity and height of low-level jets (LLJ) over the U.S. Atlantic coastal zone. Meteorological conditions and the occurrence and characteristics of LLJs are described for (i) the centroids of thirteen of the sixteen active offshore wind energy lease areas off the U.S. east coast and (ii) along two transects extending east from the U.S. coastline across the northern lease areas (LA). Flow close to the nominal hub-height of wind turbines is predominantly northwesterly and southwesterly and exhibits pronounced seasonality, with highest wind speeds in November, and lowest wind speeds in June. LLJs diagnosed using vertical profiles of modeled wind speeds from approximately 20 to 530 m above sea level exhibit highest frequency in LA south of Massachusetts, where LLJs are identified in up to 12% of hours in June. LLJs are considerably less frequent further south along the U.S. east coast and outside of the summer season. LLJs frequently occur at heights that intersect the wind turbine rotor plane, and at wind speeds within typical wind turbine operating ranges. LLJs are most frequent, intense and have lowest core heights under strong horizontal temperature gradients and lower planetary boundary layer heights.


2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document