scholarly journals Solid‐state transformers: An overview of the concept, topology, and its applications in the smart grid

Author(s):  
Hamed Shadfar ◽  
Mehrdad Ghorbani Pashakolaei ◽  
Asghar Akbari Foroud
Author(s):  
Bharat Bhushan Khare ◽  
Rajeev Shankar Pathak ◽  
Sanjeev Sharma ◽  
Vinod Kumar Singh

According to future renewable electric energy distribution and management (FREEDM) system, solid state transformers play an important role in smart grid technologies. They have several advantages over conventional transformers such as bi-directional power flow, light in weight, compact size, etc. They also compensate the environmental issues which are created due to transformer oil. Because of various advantages over traditional transformer, SST is preferred widely at the present time. So in this chapter, the various architectures, needs, and applications of solid state transformers are discussed. The global market of SST has continuously improved because it has several applications and benefits.


2021 ◽  
Author(s):  
Felipe Ruiz Allende ◽  
Marcelo A. Perez ◽  
Freddy Flores-Bahamonde ◽  
Mariusz Malinowski

2021 ◽  
Author(s):  
Jianxiong Yu ◽  
Jiatong Zhang ◽  
Rui Lu ◽  
Rongxiang Zhao ◽  
Chushan Li ◽  
...  

2021 ◽  
Author(s):  
Felipe L. Ruiz ◽  
Marcelo A. Perez ◽  
Freddy Flores-Bahamonde ◽  
Mariusz Malinowski

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3432 ◽  
Author(s):  
Fabio Bignucolo ◽  
Manuele Bertoluzzo

The ongoing diffusion of solid-state DC/DC converters makes possible a partial migration of electric power systems from the present AC paradigm to a future DC scenario. In addition, the power demand in the domestic environment is expected to grow considerably, for example, due to the progressive diffusion of electric vehicles, induction cooking and heat pumps. To face this evolution, the paper introduces a novel electric topology for a hybrid AC/DC smart house, based on the solid-state transformer technology. The electric scheme, voltage levels and converters types are thoroughly discussed to better integrate the spread of electric appliances, which are frequently based on internal DC buses, within the present AC distribution networks. Voltage levels are determined to guarantee high safety zones with negligible electric risk in the most exposed areas of the house. At the same time, the developed control schemes assure high power quality (voltage stability in the case of both load variations and network perturbations), manage power flows and local resources according to ancillary services requirements and increase the domestic network overall efficiency. Dynamic simulations are performed, making use of DIgSILENT PowerFactory software, to demonstrate the feasibility of the proposed distribution scheme for next-generation smart houses under different operating conditions.


Sign in / Sign up

Export Citation Format

Share Document