Unsupervised machine learning techniques applied to composite reliability assessment of power systems

Author(s):  
Fernando A. Assis ◽  
Alex J. C. Coelho ◽  
Lucas D. Rezende ◽  
Armando M. Leite da Silva ◽  
Leonidas C. Resende
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


2021 ◽  
Author(s):  
Marcelo E. Pellenz ◽  
Rosana Lachowski ◽  
Edgard Jamhour ◽  
Glauber Brante ◽  
Guilherme Luiz Moritz ◽  
...  

Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 258
Author(s):  
Tran Dinh Khang ◽  
Manh-Kien Tran ◽  
Michael Fowler

Clustering is an unsupervised machine learning method with many practical applications that has gathered extensive research interest. It is a technique of dividing data elements into clusters such that elements in the same cluster are similar. Clustering belongs to the group of unsupervised machine learning techniques, meaning that there is no information about the labels of the elements. However, when knowledge of data points is known in advance, it will be beneficial to use a semi-supervised algorithm. Within many clustering techniques available, fuzzy C-means clustering (FCM) is a common one. To make the FCM algorithm a semi-supervised method, it was proposed in the literature to use an auxiliary matrix to adjust the membership grade of the elements to force them into certain clusters during the computation. In this study, instead of using the auxiliary matrix, we proposed to use multiple fuzzification coefficients to implement the semi-supervision component. After deriving the proposed semi-supervised fuzzy C-means clustering algorithm with multiple fuzzification coefficients (sSMC-FCM), we demonstrated the convergence of the algorithm and validated the efficiency of the method through a numerical example.


2021 ◽  
pp. 2004099
Author(s):  
Sarah L. Finnegan ◽  
Olivia K. Harrison ◽  
Catherine J. Harmer ◽  
Mari Herigstad ◽  
Najib M. Rahman ◽  
...  

RationaleCurrent models of breathlessness often fail to explain disparities between patients' experiences of breathlessness and objective measures of lung function. While a mechanistic understanding of this discordance has thus far remained elusive, factors such as mood, attention and expectation have all been implicated as important modulators of breathlessness. Therefore, we have developed a model to better understand the relationships between these factors using unsupervised machine learning techniques. Subsequently we examined how expectation-related brain activity differed between these symptom-defined clusters of participants.MethodsA cohort of 91 participants with mild-to-moderate chronic obstructive pulmonary disease (COPD) underwent functional brain imaging, self-report questionnaires and clinical measures of respiratory function. Unsupervised machine learning techniques of exploratory factor analysis and hierarchical cluster modelling were used to model brain-behaviour-breathlessness links.ResultsWe successfully stratified participants across four key factors corresponding to mood, symptom burden and two capability measures. Two key groups resulted from this stratification, corresponding to high and low symptom burden. Compared to the high symptom load group, the low symptom burden group demonstrated significantly greater brain activity within the anterior insula, a key region thought to be involved in monitoring internal bodily sensations (interoception).ConclusionsThis is the largest functional neuroimaging study of COPD to date and is the first to provide a clear model linking brain, behaviour and breathlessness expectation. Furthermore, it was possible to stratify participants into groups, which then revealed differences in brain activity patterns. Together, these findings highlight the value of multi-modal models of breathlessness in identifying behavioural phenotypes, and for advancing understanding of differences in breathlessness burden.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1268 ◽  
Author(s):  
Zhenzhen Di ◽  
Miao Chang ◽  
Peikun Guo ◽  
Yang Li ◽  
Yin Chang

Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those in surface water have not been fully revealed and unsupervised machine learning techniques, such as clustering algorithms, have been neglected in related research fields. In this study, real-time monitoring data for chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH, and dissolved oxygen in the wastewater discharged from 2213 factories and in the surface water at 18 monitoring sections (sites) in 7 administrative regions in the Yangtze River Basin from 2016 to 2017 were collected and analyzed by the partitioning around medoids (PAM) and expectation–maximization (EM) clustering algorithms, Welch t-test, Wilcoxon test, and Spearman correlation. The results showed that compared with the spatial cluster comprising unpolluted sites, the spatial cluster comprised heavily polluted sites where more wastewater was discharged had relatively high COD (>100 mg L−1) and NH3-N (>6 mg L−1) concentrations and relatively low pH (<6) from 15 industrial classes that respected the different discharge limits outlined in the pollutant discharge standards. The results also showed that the economic activities generating wastewater and the geographical distribution of the heavily polluted wastewater changed from 2016 to 2017, such that the concentration ranges of pollutants in discharges widened and the contributions from some emerging enterprises became more important. The correlations between the quality of the wastewater and the surface water strengthened as the whole-year data sets were reduced to the heavily polluted periods by the EM clustering and water quality evaluation. This study demonstrates how unsupervised machine learning algorithms play an objective and effective role in data mining real-time monitoring information and highlighting spatio–temporal relationships between pollutants in wastewater discharges and surface water to support scientific water resource management.


Sign in / Sign up

Export Citation Format

Share Document