Biological Mass Spectrometry: Basics and Drug Discovery Related Approaches

Author(s):  
Bettina Warscheid
2021 ◽  
pp. 247255522110232
Author(s):  
Michael D. Scholle ◽  
Doug McLaughlin ◽  
Zachary A. Gurard-Levin

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)–ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose–response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


2021 ◽  
pp. 247255522110006
Author(s):  
Michael D. Scholle ◽  
Zachary A. Gurard-Levin

Arginase-1, an enzyme that catalyzes the reaction of L-arginine to L-ornithine, is implicated in the tumor immune response and represents an interesting therapeutic target in immuno-oncology. Initiating arginase drug discovery efforts remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for arginase activity. The assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z-factor > 0.8) and a significant assay window [signal-to-background ratio > 20] relative to fluorescent approaches. To validate the assay, the inhibition of the reference compound nor-NOHA (Nω-hydroxy-nor-L-arginine) was evaluated, and the IC50 measured to be in line with reported results (IC50 = 180 nM). The assay was then used to complete a screen of 175,000 compounds, demonstrating the high-throughput capacity of the approach. The label-free format also eliminates opportunities for false-positive results due to interference from library compounds and optical readouts. The assay methodology described here enables new opportunities for drug discovery for arginase and, due to the assay flexibility, can be more broadly applicable for measuring other amino acid–metabolizing enzymes.


Sign in / Sign up

Export Citation Format

Share Document