Neural Differentiation of P19 Carcinoma Cells and Primary Neurospheres: Cell Morphology, Proliferation, Viability, and Functionality

Author(s):  
Priscilla D. Negraes ◽  
Telma T. Schwindt ◽  
Cleber A. Trujillo ◽  
Henning Ulrich
2008 ◽  
Vol 90 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Yu Yang ◽  
Lanjing Zhang ◽  
Yanyu Wei ◽  
Hua Wang ◽  
Mariko Fukuma ◽  
...  

2019 ◽  
Author(s):  
Eriko Shimada ◽  
Yusuke Tsuruwaka

Various cancer cells are known to show neural differentiation. Adrenocortical carcinoma (ACC) is a rare and frequently aggressive tumor originating in the cortex of the adrenal gland. Early diagnosis of ACC is challenging due to a lot of unknown aspects such as cell characteristics in a rare cancer. In the present study, morphological features were examined in the adrenal cortex carcinoma cells SW-13 as an initial candidate, which were exposed to neural differentiation condition. SW-13 cells treated with the neural induction supplement showed neural-like differentiation with elongated filaments. It was suggested that SW-13 cells had neural differentiation potential and could be a research tool to elucidate the cell characteristics in future ACC studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Nudjanad Heebkaew ◽  
Narawadee Rujanapun ◽  
Phongsakorn Kunhorm ◽  
Thiranut Jaroonwitchawan ◽  
Nipha Chaicharoenaudomrung ◽  
...  

Curcumin is a natural polyphenolic compound, isolated from Curcuma longa, and is an important ingredient of Asian foods. Curcumin has revealed its strong activities of anti-inflammatory, antioxidant, and anticancer. The efficient amount of curcumin could induce differentiation of stem cells and promoted the differentiation of glioma-initiating cells; however, the mechanisms underlying neural induction of curcumin have not yet been revealed. In this study, neural-inducing ability of curcumin was explored by using human pluripotent embryonal carcinoma cells, NTERA2 cells. The cells were induced toward neural lineage with curcumin and were compared with a standard neutralizing agent (retinoic acid). It was found that, after 14 days of the induction by curcumin, NTERA2 cells showed neuronal morphology and expressed neural-specific genes, including NeuroD, TUJ1, and PAX6. Importantly, curcumin activated neurogenesis of NTERA2 cells via the activation of autophagy, since autophagy-related genes, such as LC3, LAMP1, and ATG5, were upregulated along with the expression of neural genes. The inhibition of autophagy by chloroquine suppressed both autophagy and neural differentiation, highlighting the positive role of autophagy during neural differentiation. This autophagy-mediated neural differentiation of curcumin was found to be an ROS-dependent manner; curcumin induced ROS generation and suppressed antioxidant gene expression. Altogether, this study proposed the neural-inducing activity of curcumin via the regulation of autophagy within NTERA2 cells and underscored the health beneficial effects of curcumin for neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease.


2008 ◽  
Vol 53 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Izuho Hatada ◽  
Sumiyo Morita ◽  
Mika Kimura ◽  
Takuro Horii ◽  
Riu Yamashita ◽  
...  

2015 ◽  
Vol 43 (01) ◽  
pp. 167-181 ◽  
Author(s):  
Byul-Bora Choi ◽  
Jeong Hae Choi ◽  
Sang-Rye Park ◽  
Ji-Young Kim ◽  
Jin-Woo Hong ◽  
...  

Scutellariae radix is one of the most widely used anticancer herbal medicines in several Asian countries, including Korea, Japan, and China. Squamous cell carcinoma (SCC) is one of the most common head and neck carcinomas, which is highly invasive and metastatic, and can potentially develop chemoresistance. Therefore, new effective treatment methods are urgently needed. We determined the effects of Scutellariae radix on SCC-25 cells using the WST-1 assay, F-actin staining, flow cytometry analysis, immunofluorescence staining, and western blot analysis. Scutellariae radix treatment inhibited SCC-25 cell growth in a dose- and time-dependent manner, but it did not inhibit HaCaT (human keratinocyte) cell growth. Changes in cell morphology and disruption of filamentous (F)-actin organization were observed. Scutellariae radix-induced apoptosis as indicated by the translocation of cytochrome c and apoptosis-inducing factor (AIF) into the nucleus and cytosol. Scutellariae radix-induced an increase in cells with sub-G1 DNA content, and increased Bax, cleaved caspase-3, caspase-7, caspase-9, DNA fragmentation factor 45 (DFF 45), and poly(ADP-ribose) polymerase-1 (PARP-1) expression levels. Furthermore, increased expression of phosphorylated mitogen-activated protein kinase (MAPK)-related proteins was detected. The antitumor effect of Scutellariae radix was due to decreased cell proliferation, changes in cell morphology, and the activation of caspase and MAPK pathways. Taken together, the findings of this study highlight the anticancer activity of Scutellariae radix in chemoresistant SCC-25 oral squamous carcinoma cells.


2019 ◽  
Author(s):  
Eriko Shimada ◽  
Yusuke Tsuruwaka

Various cancer cells are known to show neural differentiation. Adrenocortical carcinoma (ACC) is a rare and frequently aggressive tumor originating in the cortex of the adrenal gland. Early diagnosis of ACC is challenging due to a lot of unknown aspects such as cell characteristics in a rare cancer. In the present study, morphological features were examined in the adrenal cortex carcinoma cells SW-13 as an initial candidate, which were exposed to neural differentiation condition. SW-13 cells treated with the neural induction supplement showed neural-like differentiation with elongated filaments. It was suggested that SW-13 cells had neural differentiation potential and could be a research tool to elucidate the cell characteristics in future ACC studies.


Sign in / Sign up

Export Citation Format

Share Document