1987 ◽  
Vol 153 (Part_1_2) ◽  
pp. 27-36 ◽  
Author(s):  
H. Rosenberger ◽  
H. Bürger ◽  
H. Schütz ◽  
G. Scheler ◽  
G. Maenz

2020 ◽  
Vol 978 ◽  
pp. 436-445
Author(s):  
Mouparna Manna ◽  
Snehanshu Pal

In this present study, molecular dynamics (MD) simulation has been performed to investigate the influence of applied hydrostatic compressive and tensile pressure on glass forming process of Ni62Nb38 bimetallic glass using embedded atom method (EAM). During fast cooling (~10 K ps-1), tensile and compressive pressure has been applied having 0.001 GPa,0.01 GPa and 0.1 GPa magnitude. The glass transition temperature (Tg) for each pressurized (Tensile and Compressive nature) cooling case has been calculated and Tg is found to be dependent on both magnitude and nature of the pressure applied during cooling process.Voronoi cluster analysis has also been carried out to identify the structural evaluation during hydrostatically pressurised fast cooling process. In case of both hydrostatic tensile and compressive pressurised cooling processes, Tgincreases with the increase of pressure from 0.001 GPa to 0.1 GPa in magnitude.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Wuyi Ming ◽  
Haojie Jia ◽  
Heyuan Huang ◽  
Guojun Zhang ◽  
Kun Liu ◽  
...  

Curved glass is widely used in 3C industry, and the market demand is increasing gradually. Glass molding process (GMP) is a high-precision, high-efficiency 3D glass touch panel processing technology. In this study, the processing parameters of fingerprint lock glass panels were deeply analyzed. This paper first introduces the molding process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Firstly, it introduces the forming process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Secondly, the simulation model of a fingerprint lock glass plate was simulated by MSC. Marc software. The stress relaxation model and structure relaxation model are used in the model, and the heat transfer characteristics of glass mold are combined to accurately predict the forming process of glass components. The effects of molding temperature, heating rate, holding time, molding pressure, cooling rate and other process parameters on product quality characteristics (residual stress and shape deviation) were analyzed through simulation experiments. The results show that, in a certain range, the residual stress is inversely proportional to the bending temperature and heating rate, and is directly proportional to the cooling rate, while the shape deviation decreases with the increase of temperature and heating rate. When the cooling rate decreases, the shape deviation first decreases and then increases. Furthermore, a verification experiment is designed to verify the reliability of the simulation results by measuring and calculating the surface roughness of the formed products.


2006 ◽  
Vol 39 (16) ◽  
pp. 713-718 ◽  
Author(s):  
B. Corves

1996 ◽  
Vol 455 ◽  
Author(s):  
J. Matsui ◽  
M. Fujisaki ◽  
T. Odagaki

ABSTRACTWe have carried out the molecular dynamics (MD) simulation for a binary soft-sphere system and calculated the self part of the generalized susceptibility χs(q, ω) at various temperatures. At higher temperatures in liquid state, only one peak appears in the imaginary part of Xa, which tends to split into two peaks, the so-called α- and β- peaks, as the temperature is reduced. The temperature dependence of the peak frequency is well described by the Vogel-Fulcher law for the α- peak, and the peak frequency does not change much for the α- peak. We have also measured the trajectory volume of a tagged atom V(t), which is related to the dynamical order parameter, the “generalized capacity”, in structural glass transitions recently proposed by J. F. Douglas. These results show the transition temperature which is in good agreement with that determined by the trapping diffusion model.


2012 ◽  
Vol 503-504 ◽  
pp. 136-139
Author(s):  
Dao Cheng Zhang ◽  
Ke Jun Zhu ◽  
Shao Hui Yin ◽  
Yong Jian Zhu

Glass forming process is a high-volume fabrication method for producing glass containers. In this paper, the mechanisms of glass forming process were analyzed. Combined the coupled thermo-mechanical analysis with the finite element method (FEM) simulation, it was carried out to analyze the key process factors such as forming temperature, forming pressure, friction coefficient. The results show that forming pressure has the greatest influence on the stress.


2019 ◽  
Vol 214 ◽  
pp. 430-440 ◽  
Author(s):  
Yang Kang ◽  
Dunhong Zhou ◽  
Qiang Wu ◽  
Rui Liang ◽  
Shaoxin Shangguan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document