scholarly journals Study on Mechanism of Glass Molding Process for Fingerprint Lock Glass Plates

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Wuyi Ming ◽  
Haojie Jia ◽  
Heyuan Huang ◽  
Guojun Zhang ◽  
Kun Liu ◽  
...  

Curved glass is widely used in 3C industry, and the market demand is increasing gradually. Glass molding process (GMP) is a high-precision, high-efficiency 3D glass touch panel processing technology. In this study, the processing parameters of fingerprint lock glass panels were deeply analyzed. This paper first introduces the molding process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Firstly, it introduces the forming process of the glass panel, discusses the glass forming device, and explains the heat conduction principle of the glass. Secondly, the simulation model of a fingerprint lock glass plate was simulated by MSC. Marc software. The stress relaxation model and structure relaxation model are used in the model, and the heat transfer characteristics of glass mold are combined to accurately predict the forming process of glass components. The effects of molding temperature, heating rate, holding time, molding pressure, cooling rate and other process parameters on product quality characteristics (residual stress and shape deviation) were analyzed through simulation experiments. The results show that, in a certain range, the residual stress is inversely proportional to the bending temperature and heating rate, and is directly proportional to the cooling rate, while the shape deviation decreases with the increase of temperature and heating rate. When the cooling rate decreases, the shape deviation first decreases and then increases. Furthermore, a verification experiment is designed to verify the reliability of the simulation results by measuring and calculating the surface roughness of the formed products.

Author(s):  
Jian Zhou ◽  
Mujun Li ◽  
Yang Hu ◽  
Tianyi Shi ◽  
Yueliang Ji ◽  
...  

The compression molding of precision glass lens is a near net-shape forming process for optical components fabrication. The final profile curve accuracy is one of the most crucial criterions for evaluating the quality of the molded lens. In this research, our purpose was focused on the evaluation of the molded lens curve deviation. By incorporating stress relaxation and structural relaxation model of glass, numerical simulations of the whole molding process for fabricating a planoconvex lens were conducted by utilizing the commercial software msc Marc. The relationship of the three variables, i.e., the lens curve deviation, the mold curve deviation, the gap between the lens and the lower mold, was discussed and the evolution plots with time of the three variables were obtained. Details of the thermal boundary conditions were discussed by considering the contact heat transfer behavior. Then the essentiality of a small gap between the molds and the molded lens after releasing the upper mold was demonstrated. In details, the sensitivity analysis of the processing parameters was conducted, such as the releasing temperature, the cooling rate in the annealing and fast cooling stage, respectively, and the magnitude of the hold-up force. The results showed that the glass lens curve deviation was not sensitive to the choices of the releasing temperature and the cooling rate. What's more, the results indicated that the curve deviation decreased with the hold-up force increasing. Finally, with all the details considered, the final simulation results were presented accurately with good reason.


2014 ◽  
Vol 852 ◽  
pp. 168-172 ◽  
Author(s):  
Jia Ju ◽  
Feng Xue ◽  
Jian Zhou ◽  
Jing Bai

Residual stresses were investigation by Three-D finite element simulation and experimental method. The Three-D finite element simulation confirms large residual stress appears in seam zone because of the crack part and the maximum loading parts were not coinciding. The heating/cooling rate can seriously affect the residual stress. Along with the heating rate decrease, the residual stress reduces in material and had big drop in high heating rate range than lower range. And cooling rate influence the residual stress in cemented carbide was more sensitive than in steel. Meanwhile, far away the seam, the residual stress decrease and became stable. After heat treatment, the residual stress reduced from more than 800MPa, 300MPa to less 100MPa, 52Mpa in WC-Co side and steel side respectively and the material had better abrasion resistance and high strength.


1974 ◽  
Vol 41 (3) ◽  
pp. 647-651 ◽  
Author(s):  
Myron Levitsky ◽  
Bernard W. Shaffer

A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.


Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yunqian He ◽  
Yuelin Wang ◽  
Tie Li

AbstractThe heat conduction and infrared absorption properties of the dielectric film have a great influence on the thermopile performance. Thinning the dielectric film, reducing its contact area with the silicon substrate, or adding high-absorptivity nanomaterials has been proven to be effective in improving thermopiles. However, these methods may result in a decrease in the structural mechanical strength and increases in the fabrication complexity and cost. In this work, a new performance-enhancement strategy for thermopiles by simultaneously controlling the heat conduction and infrared absorption with a TExtured DIelectric (TEDI) film is developed and presented. The TEDI film is formed in situ by a simple hard-molding process that is compatible with the fabrication of traditional thermopiles. Compared to the control FLat DIelectric (FLDI) film, the intrinsic thermal conductance of the TEDI film can be reduced by ~18–30%, while the infrared absorption can be increased by ~7–13%. Correspondingly, the responsivity and detectivity of the fabricated TEDI film-based thermopile can be significantly enhanced by ~38–64%. An optimized TEDI film-based thermopile has achieved a responsivity of 156.89 V·W−1 and a detectivity of 2.16 × 108 cm·Hz1/2·W−1, while the response time constant can remain <12 ms. These results exhibit the great potential of using this strategy to develop high-performance thermopiles and enhance other sensors with heat transfer and/or infrared absorption mechanisms.


Author(s):  
René Selbmann ◽  
Markus Baumann ◽  
Mateus Dobecki ◽  
Markus Bergmann ◽  
Verena Kräusel ◽  
...  

AbstractThe residual stress distribution in extruded components and wires after a conventional forming process is frequently unfavourable for subsequent processes, such as bending operations. High tensile residual stresses typically occur near the surface of the wire and thus limit further processability of the material. Additional heat treatment operations or shot peening are often inserted to influence the residual stress distribution in the material after conventional manufacturing. This is time and energy consuming. The research presented in this paper contains an approach to influence the residual stress distribution by modifying the forming process for wire-like applications. The aim of this process is to lower the resulting tensile stress levels near the surface or even to generate compressive stresses. To achieve these residual compressive stresses, special forming elements are integrated in the dies. These modifications in the forming zone have a significant influence on process properties, such as degree of deformation and deformation direction, but typically have no influence on the diameter of the product geometry. In the present paper, the theoretical approach is described, as well as the model set-up, the FE-simulation and the results of the experimental tests. The characterization of the residual stress states in the specimen was carried out by X-ray diffraction using the sin2Ψ method.


1987 ◽  
Vol 153 (Part_1_2) ◽  
pp. 27-36 ◽  
Author(s):  
H. Rosenberger ◽  
H. Bürger ◽  
H. Schütz ◽  
G. Scheler ◽  
G. Maenz

2017 ◽  
Vol 37 (5) ◽  
pp. 505-520 ◽  
Author(s):  
Wen-Ren Jong ◽  
Shyh-Shin Hwang ◽  
Ming-Chieh Tsai ◽  
Chien-Chou Wu ◽  
Chi-Hung Kao ◽  
...  

Abstract Plastic products are common in contemporary daily lives. In the plastics industry, the injection molding process is advantageous for features such as mass production and stable quality. The problem, however, is that the melt will be affected by the residual stress and shrinkage generated in the process of filling and cooling; hence, defects such as warping, deformation, and sink marks will occur. In order to reduce product deformation and shrinkage during the process of molding, the screw of the injection molding machine will start the packing stage when filling is completed, which continuously pushes the melt into the cavity, thus making up for product shrinkage and improving their appearance, quality, and strength. If the packing pressure is too high, however, the internal residual stress will increase accordingly. This study set out to apply gas counter pressure (GCP) in the injection molding process. By importing gas through the ends of the cavity, the melt was exposed to a melt front pressure, which, together with the packing pressure from the screw, is supposed to reduce product shrinkage. The aim was to investigate the impacts of GCP on the process parameters via the changes in machine feedback data, such as pressure and the remaining injection resin. This study also used a relatively thin plate-shaped product and measurements, such as the photoelastic effect and luminance meter, to probe into the impacts of GCP on product residual stress, while a relatively thick paper-clip-shaped product was used to see the impacts of GCP on shrinkage in thick parts. According to the experimental results, the addition of GCP resulted in increased filling volume, improvement of product weight and stability, and effective reduction of section shrinkage, which was most obvious at the point closest to the gas entrance. The shrinkage of the sections parallel and vertical to the flow direction was proved to be reduced by 32% and 16%, respectively. Moreover, observations made via the polarizing stress viewer and luminance meter showed that the internal residual stress of a product could be effectively reduced by a proper amount of GCP.


1994 ◽  
Vol 376 ◽  
Author(s):  
V.L. Aksenov ◽  
A.M. Balagurov ◽  
G.D Bokuchava ◽  
J. Schreiber ◽  
Yu.V. Taran Frank

ABSTRACTVariation of internal stress states in cold rolled sheet metal can essentially influence the result of forming processes. Therefore it is important to control the forming process by a practicable in line testing method. For this purpose magnetic and ultrasonic nondestructive methods are available. However, it is necessary to calibrate these techniques. This paper describes a first step of such a calibration procedure making use of the neutron diffraction method. On the basis of the diffraction results an assessment of the magnetic and ultrasonic methods for the estimation of residual stress in the cold rolled iron-disks was made. Reasonable measuring concepts for practical applications to forming processes with cold rolled sheet metal are discussed.


2004 ◽  
Vol 69 (5) ◽  
Author(s):  
Nicolas Giovambattista ◽  
H. Eugene Stanley ◽  
Francesco Sciortino

Sign in / Sign up

Export Citation Format

Share Document