Separation of Diffusive Jump Motion and Trapped Motion of Atoms in a Glass Forming Process Via Molecular Dynamics Simulation

1996 ◽  
Vol 455 ◽  
Author(s):  
J. Matsui ◽  
M. Fujisaki ◽  
T. Odagaki

ABSTRACTWe have carried out the molecular dynamics (MD) simulation for a binary soft-sphere system and calculated the self part of the generalized susceptibility χs(q, ω) at various temperatures. At higher temperatures in liquid state, only one peak appears in the imaginary part of Xa, which tends to split into two peaks, the so-called α- and β- peaks, as the temperature is reduced. The temperature dependence of the peak frequency is well described by the Vogel-Fulcher law for the α- peak, and the peak frequency does not change much for the α- peak. We have also measured the trajectory volume of a tagged atom V(t), which is related to the dynamical order parameter, the “generalized capacity”, in structural glass transitions recently proposed by J. F. Douglas. These results show the transition temperature which is in good agreement with that determined by the trapping diffusion model.

2020 ◽  
Vol 978 ◽  
pp. 436-445
Author(s):  
Mouparna Manna ◽  
Snehanshu Pal

In this present study, molecular dynamics (MD) simulation has been performed to investigate the influence of applied hydrostatic compressive and tensile pressure on glass forming process of Ni62Nb38 bimetallic glass using embedded atom method (EAM). During fast cooling (~10 K ps-1), tensile and compressive pressure has been applied having 0.001 GPa,0.01 GPa and 0.1 GPa magnitude. The glass transition temperature (Tg) for each pressurized (Tensile and Compressive nature) cooling case has been calculated and Tg is found to be dependent on both magnitude and nature of the pressure applied during cooling process.Voronoi cluster analysis has also been carried out to identify the structural evaluation during hydrostatically pressurised fast cooling process. In case of both hydrostatic tensile and compressive pressurised cooling processes, Tgincreases with the increase of pressure from 0.001 GPa to 0.1 GPa in magnitude.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110446
Author(s):  
Mohammadreza Heidari Pebdani ◽  
Ronald E. Miller

Molecular dynamics (MD) simulation has been applied to study of pull-out of Halloysite nanotubes (HNTs) from a polyurethane (PU) matrix. First, the Machine learning (ML) particle swarm optimization (PSO) method was used to obtain force field parameters for MD from data of density functional theory (DFT) calculations. The current study shows the possibility of using a PSO technique to modify the force field with DFT data with less than 5 kcal/mol discrepancy. Second, we considered the influence of atomic interface on pulling out of HNT from PU. Energy variation has been proposed as the cohesion strength between matrix and nanoparticle. In addition, the best Lennard Jones parameters in the MD simulation make good agreement with an experimental sample stress-strain response.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


2020 ◽  
Vol 18 (1) ◽  
pp. 69-76
Author(s):  
Qiang Wang ◽  
Qizhong Tang ◽  
Sen Tian

AbstractMolecular dynamics (MD) analysis of methane hydrate is important for the application of methane hydrate technology. This study investigated the microstructure changes of sI methane hydrate and the laws of stress–strain evolution under the condition of compression and tension by using MD simulation. This study further explored the mechanical property and stability of sI methane hydrate under different stress states. Results showed that tensile and compressive failures produced an obvious size effect under a certain condition. At low temperature and high pressure, most of the clathrate hydrate maintained a stable structure in the tensile fracture process, during which only a small amount of unstable methane broke the structure, thereby, presenting a free-motion state. The methane hydrate cracked when the system reached the maximum stress in the loading process, in which the maximum compressive stress is larger than the tensile stress under the same experimental condition. This study provides a basis for understanding the microscopic stress characteristics of methane hydrate.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan ◽  
Ashlie Martini

Recently, atomic force microscopy (AFM) has been widely used for nanomachining and fabrication of micro/ nanodevices. This paper describes the development and validation of computational models for AFM-based nanomachining (nanoindentation and nanoscratching). The Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale in the case of gold and silicon. The simulation allows for the prediction of indentation forces and the friction force at the interface between an indenter and a substrate. The effects of tip curvature and speed on indentation force and friction coefficient are investigated. The material deformation and indentation geometry are extracted based on the final locations of atoms, which are displaced by the rigid tool. In addition to modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to validate the predictions from the MD simulation. The AFM provides resolution on nanometer (lateral) and angstrom (vertical) scales. A three-sided pyramid indenter (with a radius of curvature ∼ 50 nm) is raster scanned on top of the surface and in contact with it. It can be observed from the MD simulation results that the indentation force increases as the depth of indentation increases, but decreases as the scratching speed increases. On the other hand, the friction coefficient is found to be independent of scratching speed.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1779-1788 ◽  
Author(s):  
JASON A.C. GALLAS ◽  
HANS J. HERRMANN ◽  
STEFAN SOKOLOWSKI

When sand or other granular materials are shaken, poured or sheared many intriguing phenomena can be observed. We will model the granular medium by a packing of elastic spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. The onset of fluidization can be determined and is in good agreement with experiments. On a vibrating plate we observe the formation of convection cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts are measured and the influence of an obstacle discussed. We mention various types of rheology for flow down an inclined chute or through a pipe and outflowing containers.


CrystEngComm ◽  
2019 ◽  
Vol 21 (48) ◽  
pp. 7507-7518 ◽  
Author(s):  
Soroush Ahmadi ◽  
Yuanyi Wu ◽  
Sohrab Rohani

Molecular dynamics (MD) simulation is used to investigate the mechanism of crystal nucleation of potassium chloride (KCl) in a supersaturated aqueous solution at 293 K and 1 atm.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 453 ◽  
Author(s):  
Masoud Kamoleka Mlela ◽  
He Xu ◽  
Feng Sun ◽  
Haihang Wang ◽  
Gabriel Donald Madenge

In the milestone of straggling to make water hydraulics more advantageous, the choice of coating polymer for water hydraulics valves plays an essential role in alleviating the impact of cavitation erosion and corrosion, and this is a critical task for designers. Fulfilling the appropriate selection, we conflicted properties that are vital for erosion and corrosion inhibitors, as well as the tribology in the sense of coefficient of friction. This article aimed to choose the best alternative polymer for coating on the selected substrate, that is, Cr2O3, Al2O3, Ti2O3. By applying PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), the best polymer obtained with an analyzed performance attribute is Polytetrafluoroethylene (PTFE) that comes up with higher outranking (0.5932052). A Molecular Dynamics (MD) simulation was conducted to identify the stronger bonding with the regards of the better cleave plane between Polytetrafluoroethylene (PTFE) and the selected substrate. Polytetrafluoroethylene (PTFE)/Al2O3 cleaved in (010) plane was observed to be the strongest bond in terms of binding energy (3188 kJ/mol) suitable for further studies.


Sign in / Sign up

Export Citation Format

Share Document