Novel Real-Time Method for Measuring the Densification Rate of Carbon-Carbon Fiber-Matrix Composites and Other Articles (Invited Paper)

Author(s):  
Ilan Golecki ◽  
Dave Narasimhan
2002 ◽  
Vol 755 ◽  
Author(s):  
Ilan Golecki ◽  
Karen Fuentes ◽  
Terence Walker

ABSTRACTA methodology is described for protecting Carbon-Carbon fiber-matrix composite (C-C) components from oxidation for extended use in oxidizing ambients for lifetimes of the order of 10,000 hours, from room temperature to 650°C. This time-temperature profile is relevant to applications such as airborne heat exchangers. Weight changes of oxidation-protected, pitch-fiber based C-C coupons in flowing dry air at 650°C are presented. Two types of external protective approaches are compared: (a) multi-phase, borophosphate-based fluidizing overseal coatings applied directly to C-C, and (b) the same overseal coatings applied to CVD SiOxCy coated C-C. The latter, dual-coating approach provides an effective engineering solution for the above temperature-time profile and is particularly applicable to thin (0.1–3 mm thick), complex-shaped articles. The behavior of inert substrates (oxidized silicon) with the same overseal coatings is compared to the behavior of the C-C substrates. This approach can be applied with optional modifications to suit other environmental conditions, and other carbon-containing materials, such as carbon foams and C-SiC composites.


2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


Sign in / Sign up

Export Citation Format

Share Document