Proteome Analysis of Cellular Responses to Abiotic Stresses in Plants

2008 ◽  
pp. 605-627 ◽  
Author(s):  
Hans-Peter Mock ◽  
Andrea Matros
2001 ◽  
Vol 183 (1) ◽  
pp. 301-308 ◽  
Author(s):  
Mee-Jung Han ◽  
Sang Sun Yoon ◽  
Sang Yup Lee

ABSTRACT Recombinant Escherichia coli strains harboring heterologous polyhydroxyalkanoate (PHA) biosynthesis genes were shown to accumulate unusually large amounts of PHA. In the present study, integrated cellular responses of metabolically engineered E. coli to the accumulation of poly(3-hydroxybutyrate) (PHB) in the early stationary phase were analyzed at the protein level by two-dimensional gel electrophoresis. Out of 20 proteins showing altered expression levels with the accumulation of PHB, 13 proteins were identified with the aid of mass spectrometry. Three heat shock proteins, GroEL, GroES, and DnaK, were significantly up-regulated in PHB-accumulating cells. Proteins which play essential roles in protein biosynthesis were unfavorably influenced by the accumulation of PHB. Cellular demand for the large amount of acetyl coenzyme A and NADPH for the PHB biosynthesis resulted in the increased synthesis of two enzymes of the glycolytic pathway and one enzyme of the Entner-Doudoroff pathway. The expression of the yfiD gene encoding a 14.3-kDa protein, which is known to be produced at low pH, was greatly induced with the accumulation of PHB. Therefore, it could be concluded that the accumulation of PHB in E. coli acted as a stress on the cells, which reduced the cells' ability to synthesize proteins and induced the expression of various protective proteins.


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
S Werz ◽  
V Lehmensiek ◽  
S Süssmuth ◽  
H Mogel ◽  
J Brettschneider ◽  
...  

2008 ◽  
Vol 28 (01/02) ◽  
pp. 85-88 ◽  
Author(s):  
D. Fuchs ◽  
H. Daniel ◽  
U. Wenzel

SummaryEpidemiological studies indicate that the consumption of soy-containing food may prevent or slow-down the development of cardiovascular disease. In endothelial cells application of a soy extract or a combination of the most abundant soy isoflavones genistein and daidzein both inhibited apoptosis, a driving force in atherosclerosis development, when applied in combination with oxidized LDL or homocysteine. Proteome analysis revealed that the stressorinduced alteration of protein expression profile was reversed by the soy extract or the genistein/daidzein mixture. Only few protein entities that could be functionally linked to mitochondrial dysfunction were regulated in common by both application forms of isoflavones. A dietary intervention with isoflavone-enriched soy extract in postmenopausal women, who generally show strongly increased cardiovascular risk due to diminished estrogen production, led to significant alterations in the steady state levels of proteins from mononuclear blood cells. The proteins identified by proteome analysis revealed that soy isoflavones may increase the anti-inflammatory response in blood mononuclear cells thereby contributing to the atherosclerosispreventive activities of a soy-rich diet. Conclusion: By proteome analysis protein targets were identified in vitro in endothelial cells that respond to soy isoflavones and that may decipher molecular mechanisms through which soy products exert their protective effects in the vasculature.


2018 ◽  
Author(s):  
Janine Golchert ◽  
Julika Lietzow ◽  
Uwe Volker ◽  
Georg Homuth ◽  
Josef Kohrle

Sign in / Sign up

Export Citation Format

Share Document