Swine Influenza: Etiology, Epidemiology, and Diagnosis

Author(s):  
Kyoung-Jin Yoon ◽  
Bruce H. Janke
Keyword(s):  
Author(s):  
Ana Luiza Soares Fraiha ◽  
Ana Carolina Diniz Matos ◽  
João Luis Reis Cunha ◽  
Beatriz Senra Álvares da Silva Santos ◽  
Maria Vitória Chaves Peixoto ◽  
...  

2013 ◽  
Vol 54 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Weili Kong ◽  
Jiahui Ye ◽  
Shangsong Guan ◽  
Jinhua Liu ◽  
Juan Pu

2010 ◽  
Vol 139 (9) ◽  
pp. 1418-1424 ◽  
Author(s):  
B. D. M. TOM ◽  
A. J. VAN HOEK ◽  
R. PEBODY ◽  
J. McMENAMIN ◽  
C. ROBERTSON ◽  
...  

SUMMARYCharacterization of the incubation time from infection to onset is important for understanding the natural history of infectious diseases. Attempts to estimate the incubation time distribution for novel A(H1N1v) have been, up to now, based on limited data or peculiar samples. We characterized this distribution for a generic group of symptomatic cases using laboratory-confirmed swine influenza case-information. Estimates of the incubation distribution for the pandemic influenza were derived through parametric time-to-event analyses of data on onset of symptoms and exposure dates, accounting for interval censoring. We estimated a mean of about 1·6–1·7 days with a standard deviation of 2 days for the incubation time distribution in those who became symptomatic after infection with the A(H1N1v) virus strain. Separate analyses for the <15 years and ⩾15 years age groups showed a significant (P<0·02) difference with a longer mean incubation time in the older age group.


2016 ◽  
Vol 49 (2) ◽  
pp. 163-189 ◽  
Author(s):  
Erik Baekkeskov

Reputation-seeking can explain some decisions of U.S. federal agencies. However, it has remained unclear whether it could be used in the European context where agencies have proliferated in national and regional governance in the past few decades. This article shows that reputation-seeking can occur at autonomous agencies in the European context. A unique participant-observational study of an international public health agency acting in response to the 2009 H1N1 “swine” influenza pandemic provides bases for this conclusion. It adds empirical support for the proposition using real-time observations of and in-depth interviews on the agency’s decision-making processes.


2014 ◽  
Vol 95 (11) ◽  
pp. 2372-2376 ◽  
Author(s):  
Andi Krumbholz ◽  
Jeannette Lange ◽  
Andreas Sauerbrei ◽  
Marco Groth ◽  
Matthias Platzer ◽  
...  

The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979–1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34–46 years (before 2008) depending on the RNA segment and the method of tree inference.


2015 ◽  
Vol 89 (22) ◽  
pp. 11275-11283 ◽  
Author(s):  
Heather M. Machkovech ◽  
Trevor Bedford ◽  
Marc A. Suchard ◽  
Jesse D. Bloom

ABSTRACTNumerous experimental studies have demonstrated that CD8+T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+T cells. Here we use a novel computational approach to test for selection in CD8+T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint.IMPORTANCEThere is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially located on the “trunk” of the phylogenetic tree. Overall, our results show that CD8+T cells targeting nucleoprotein play an important role in shaping influenza virus evolution.


Sign in / Sign up

Export Citation Format

Share Document