scholarly journals Origin of the European avian-like swine influenza viruses

2014 ◽  
Vol 95 (11) ◽  
pp. 2372-2376 ◽  
Author(s):  
Andi Krumbholz ◽  
Jeannette Lange ◽  
Andreas Sauerbrei ◽  
Marco Groth ◽  
Matthias Platzer ◽  
...  

The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979–1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34–46 years (before 2008) depending on the RNA segment and the method of tree inference.

2020 ◽  
Vol 117 (34) ◽  
pp. 20814-20825 ◽  
Author(s):  
Samantha J. Lycett ◽  
Anne Pohlmann ◽  
Christoph Staubach ◽  
Valentina Caliendo ◽  
Mark Woolhouse ◽  
...  

Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/Guangdong/1/96 lineage can cause severe disease in poultry and wild birds, and occasionally in humans. In recent years, H5 HPAI viruses of this lineage infecting poultry in Asia have spilled over into wild birds and spread via bird migration to countries in Europe, Africa, and North America. In 2016/2017, this spillover resulted in the largest HPAI epidemic on record in Europe and was associated with an unusually high frequency of reassortments between H5 HPAI viruses and cocirculating low-pathogenic avian influenza viruses. Here, we show that the seven main H5 reassortant viruses had various combinations of gene segments 1, 2, 3, 5, and 6. Using detailed time-resolved phylogenetic analysis, most of these gene segments likely originated from wild birds and at dates and locations that corresponded to their hosts’ migratory cycles. However, some gene segments in two reassortant viruses likely originated from domestic anseriforms, either in spring 2016 in east China or in autumn 2016 in central Europe. Our results demonstrate that, in addition to domestic anseriforms in Asia, both migratory wild birds and domestic anseriforms in Europe are relevant sources of gene segments for recent reassortant H5 HPAI viruses. The ease with which these H5 HPAI viruses reassort, in combination with repeated spillovers of H5 HPAI viruses into wild birds, increases the risk of emergence of a reassortant virus that persists in wild bird populations yet remains highly pathogenic for poultry.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Divya Venkatesh ◽  
Marjolein J. Poen ◽  
Theo M. Bestebroer ◽  
Rachel D. Scheuer ◽  
Oanh Vuong ◽  
...  

ABSTRACTWild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area.IMPORTANCEWaterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 541 ◽  
Author(s):  
Xiangjie Sun ◽  
Jessica A. Belser ◽  
Taronna R. Maines

As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.


2020 ◽  
Vol 117 (29) ◽  
pp. 17104-17111
Author(s):  
Nicola F. Müller ◽  
Ugnė Stolz ◽  
Gytis Dudas ◽  
Tanja Stadler ◽  
Timothy G. Vaughan

Reassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process. In order to perform inference under this model, we present an efficient Markov chain Monte Carlo algorithm to sample rooted networks and the embedding of phylogenetic trees within networks. This algorithm provides the means to jointly infer coalescent and reassortment rates with the reassortment network and the embedding of segments in that network from full-genome sequence data. Studying reassortment patterns of different human influenza datasets, we find large differences in reassortment rates across different human influenza viruses. Additionally, we find that reassortment events predominantly occur on selectively fitter parts of reassortment networks showing that on a population level, reassortment positively contributes to the fitness of human influenza viruses.


Chemotherapy ◽  
2016 ◽  
Vol 61 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Woo-Jin Shin ◽  
Ky-Youb Nam ◽  
Nam-Doo Kim ◽  
Sei-Hwan Kim ◽  
Kyoung-Tai No ◽  
...  

Background: The zoonotic transmission of highly pathogenic avian influenza viruses and the global pandemic of H1N1 influenza in 2009 signified the need for a wider coverage of therapeutic options for the control of influenza. Methods: An in-house compound library was screened using a cytopathic effect inhibition assay. Selected hits were then tested in vivo and used as a core skeleton for derivative synthesis. Results: The hit compound (BMD-2601505) was effective [50% effective concentration (EC50) of 60-70 μM] in reducing the death rate of cells infected with human influenza A and B viruses as well as avian influenza A virus. Furthermore, BMD-2601505 reduced the weight loss and increased the survival after lethal infection. The compound was further modified to enhance its antiviral potency. Results show that one derivative with bromobenzene moiety was most effective (EC50 of 22-37 μM) against the influenza viruses tested. Conclusion: We identified a small benzamide compound exhibiting antiviral activity against influenza viruses. The results warrant further evaluation of antiviral activities against drug-resistant influenza isolates.


2013 ◽  
Vol 368 (1614) ◽  
pp. 20120382 ◽  
Author(s):  
S. Bhatt ◽  
T. T. Lam ◽  
S. J. Lycett ◽  
A. J. Leigh Brown ◽  
T. A. Bowden ◽  
...  

Few questions on infectious disease are more important than understanding how and why avian influenza A viruses successfully emerge in mammalian populations, yet little is known about the rate and nature of the virus’ genetic adaptation in new hosts. Here, we measure, for the first time, the genomic rate of adaptive evolution of swine influenza viruses (SwIV) that originated in birds. By using a curated dataset of more than 24 000 human and swine influenza gene sequences, including 41 newly characterized genomes, we reconstructed the adaptive dynamics of three major SwIV lineages (Eurasian, EA; classical swine, CS; triple reassortant, TR). We found that, following the transfer of the EA lineage from birds to swine in the late 1970s, EA virus genes have undergone substantially faster adaptive evolution than those of the CS lineage, which had circulated among swine for decades. Further, the adaptation rates of the EA lineage antigenic haemagglutinin and neuraminidase genes were unexpectedly high and similar to those observed in human influenza A. We show that the successful establishment of avian influenza viruses in swine is associated with raised adaptive evolution across the entire genome for many years after zoonosis, reflecting the contribution of multiple mutations to the coordinated optimization of viral fitness in a new environment. This dynamics is replicated independently in the polymerase genes of the TR lineage, which established in swine following separate transmission from non-swine hosts.


2021 ◽  
Author(s):  
Wen Su ◽  
Rhodri Harfoot ◽  
Yvonne Su ◽  
Jennifer DeBeauchamp ◽  
Udayan Joseph ◽  
...  

Abstract The emergence of a pandemic influenza virus may be better anticipated if we better understand the evolutionary steps taken by avian influenza viruses as they adapt to mammals. We used ancestral sequence reconstruction to resurrect viruses representing initial adaptive stages of the European avian-like H1N1 virus as it transitioned from avian to swine hosts. We demonstrate that efficient transmissibility in pigs was gained through stepwise adaptation after 1983. These time-dependent adaptations resulted in changes in hemagglutinin receptor binding specificity and increased viral polymerase activity. An NP-R351K mutation under strong positive selection increased the transmissibility of a reconstructed virus. The stepwise-adaptation of a wholly avian influenza virus to a mammalian host suggests a window where targeted intervention may have highest impact. Successful intervention will, however, require strategic coordination of surveillance and risk assessment activities to identify these adapting viruses and guide pandemic preparedness resources.


2019 ◽  
Author(s):  
Nicola F. Müller ◽  
Ugnė Stolz ◽  
Gytis Dudas ◽  
Tanja Stadler ◽  
Timothy G. Vaughan

AbstractReassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. We here introduce a novel coalescent based model that allows us to explicitly model the joint coalescent and reassortment process. In order to perform inference under this model, we present an efficient Markov chain Monte Carlo algorithm to sample rooted networks and the embedding of phylogenetic trees within networks. Together, these provide the means to jointly infer coalescent and reassortment rates with the reassortment network and the embedding of segments in that network from full genome sequence data. Studying reassortment patterns of different human influenza datasets, we find large differences in reassortment rates across different human influenza viruses. Additionally, we find that reassortment events predominantly occur on selectively fitter parts of reassortment networks showing that on a population level, reassortment positively contributes to the fitness of human influenza viruses.


1999 ◽  
Vol 73 (3) ◽  
pp. 1878-1884 ◽  
Author(s):  
J. Stech ◽  
X. Xiong ◽  
C. Scholtissek ◽  
R. G. Webster

ABSTRACT In 1979, an H1N1 avian influenza virus crossed the species barrier, establishing a new lineage in European swine. Because there is no direct or serologic evidence of previous H1N1 strains in these pigs, these isolates provide a model for studying early evolution of influenza viruses. The evolutionary rates of both the coding and noncoding changes of the H1N1 swine strains are higher than those of human and classic swine influenza A viruses. In addition, early H1N1 swine isolates show a marked plaque heterogeneity that consistently appears after a few passages. The presence of a mutator mutation was postulated (C. Scholtissek, S. Ludwig, and W. M. Fitch, Arch. Virol. 131:237–250, 1993) to account for these observations and the successful establishment of an avian H1N1 strain in swine. To address this question, we calculated the mutation rates of A/Mallard/New York/6750/78 (H2N2) and A/Swine/Germany/2/81 (H1N1) by using the frequency of amantadine-resistant mutants. To account for the inherent variability of estimated mutation rates, we used a probabilistic model for the statistical analysis. The resulting estimated mutation rates of the two strains were not significantly different. Therefore, an increased mutation rate due to the presence of a mutator mutation is unlikely to have led to the successful introduction of avian H1N1 viruses in European swine.


Sign in / Sign up

Export Citation Format

Share Document