Morphogen Gradients and the Control of Body Pattern in Insect Embryos

Author(s):  
Gary Struhl
In Vitro ◽  
1976 ◽  
Vol 12 (2) ◽  
pp. 141-146 ◽  
Author(s):  
T. J. Kurtti ◽  
Marion A. Brooks
Keyword(s):  

Science ◽  
2014 ◽  
Vol 345 (6196) ◽  
pp. 566-570 ◽  
Author(s):  
J. Raspopovic ◽  
L. Marcon ◽  
L. Russo ◽  
J. Sharpe
Keyword(s):  

2013 ◽  
Vol 368 (1632) ◽  
pp. 20130018 ◽  
Author(s):  
Andrea I. Ramos ◽  
Scott Barolo

In the era of functional genomics, the role of transcription factor (TF)–DNA binding affinity is of increasing interest: for example, it has recently been proposed that low-affinity genomic binding events, though frequent, are functionally irrelevant. Here, we investigate the role of binding site affinity in the transcriptional interpretation of Hedgehog (Hh) morphogen gradients . We noted that enhancers of several Hh-responsive Drosophila genes have low predicted affinity for Ci, the Gli family TF that transduces Hh signalling in the fly. Contrary to our initial hypothesis, improving the affinity of Ci/Gli sites in enhancers of dpp , wingless and stripe , by transplanting optimal sites from the patched gene, did not result in ectopic responses to Hh signalling. Instead, we found that these enhancers require low-affinity binding sites for normal activation in regions of relatively low signalling. When Ci/Gli sites in these enhancers were altered to improve their binding affinity, we observed patterning defects in the transcriptional response that are consistent with a switch from Ci-mediated activation to Ci-mediated repression. Synthetic transgenic reporters containing isolated Ci/Gli sites confirmed this finding in imaginal discs. We propose that the requirement for gene activation by Ci in the regions of low-to-moderate Hh signalling results in evolutionary pressure favouring weak binding sites in enhancers of certain Hh target genes.


2016 ◽  
Vol 27 ◽  
pp. 119-127 ◽  
Author(s):  
Shinya Matsuda ◽  
Stefan Harmansa ◽  
Markus Affolter
Keyword(s):  

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3419-3432 ◽  
Author(s):  
B.T. Rogers ◽  
T.C. Kaufman

The structure of the insect head has long been a topic of enjoyable yet endless debate among entomologists. More recently geneticists and molecular biologists trying to better understand the structure of the head of the Dipteran Drosophila melanogaster have joined the discourse extrapolating from what they have learned about Drosophila to insects in general. Here we present the results of an investigation into the structure of the insect head as revealed by the distribution of engrailed related protein (Engrailed) in the insect orders Diptera, Siphonaptera, Orthoptera and Hemiptera. The results of this comparative embryology in conjunction with genetic experiments on Drosophila melanogaster lead us to conclude: (1) The insect head is composed of six Engrailed accumulating segments, four postoral and two preoral. The potential seventh and eighth segments (clypeus or labrum) do not accumulate Engrailed. (2) The structure known as the dorsal ridge is not specific to the Diptera but is homologous to structures found in other insect orders. (3) A part of this structure is a single segment-like entity composed of labial and maxillary segment derivatives which produce the most anterior cuticle capable of taking a dorsal fate. The segments anterior to the maxillary segment produce only ventral structures. (4) As in Drosophila, the process of segmentation of the insect head is fundamentally different from the process of segmentation in the trunk. (5) The pattern of Engrailed accumulation and its presumed role in the specification and development of head segments appears to be highly conserved while its role in other pattern formation events and tissue-specific expression is variable. An overview of the pattern of Engrailed accumulation in developing insect embryos provides a basis for discussion of the generality of the parasegment and the evolution of Engrailed patterns.


2014 ◽  
Vol 15 (2) ◽  
pp. 75-75 ◽  
Author(s):  
Kim Baumann
Keyword(s):  

2019 ◽  
Author(s):  
Prasad U. Bandodkar ◽  
Hadel Al Asafen ◽  
Gregory T. Reeves

AbstractA feed forward loop (FFL) is commonly observed in several biological networks. The FFL network motif has been mostly been studied with respect to variation of the input signal in time, with only a few studies of FFL activity in a spatially distributed system such as morphogen-mediated tissue patterning. However, most morphogen gradients also evolve in time. We studied the spatiotemporal behavior of a coherent FFL in two contexts: (1) a generic, oscillating morphogen gradient and (2) the dorsal-ventral patterning of the early Drosophila embryo by a gradient of the NF-κB homolog Dorsal with its early target Twist. In both models, we found features in the dynamics of the intermediate node – phase difference and noise filtering – that were largely independent of the parameterization of the models, and thus were functions of the structure of the FFL itself. In the Dorsal gradient model, we also found that the dynamics of Dorsal require maternal pioneering factor Zelda for proper target gene expression.


2021 ◽  
Author(s):  
Roman Vetter ◽  
Dagmar Iber

During development, morphogen gradients provide spatial information for tissue patterning. Gradients and readout mechanisms are inevitably variable, yet the resulting patterns are strikingly precise. Measurement limitations currently preclude precise detection of morphogen gradients over long distances. Here, we develop a new formalism to estimate gradient precision along the entire patterning axis from measurements close to the source. Using numerical simulations, we infer gradient variability from measured molecular noise levels in morphogen production, decay, and diffusion. The predicted precision is much higher than previously measured—precise enough to allow even single gradients to define the central progenitor boundaries during neural tube development. Finally, we show that the patterning mechanism is optimized for precise progenitor cell numbers, rather than precise boundary positions, as the progenitor domain size is particularly robust to gradient alterations. We conclude that single gradients can yield the observed developmental precision, which provides new prospects for tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document