comparative embryology
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Oghenevwogaga J. Atake ◽  
B. Frank Eames

The impregnation of biominerals into the extracellular matrix of living organisms, a process termed biomineralization, gives rise to diverse mineralized (or calcified) tissues in vertebrates. Preservation of mineralized tissues in the fossil record has provided insights into the evolutionary history of vertebrates and their skeletons. However, current understanding of the vertebrate skeleton and of the processes underlying its formation is biased towards biomedical models such as the tetrapods mouse and chick. Chondrichthyans (sharks, skates, rays, and chimaeras) and osteichthyans are the only vertebrate groups with extant (living) representatives that have a mineralized skeleton, but the basal phylogenetic position of chondrichthyans could potentially offer unique insights into skeletal evolution. For example, bone is a vertebrate novelty, but the internal supporting skeleton (endoskeleton) of extant chondrichthyans is commonly described as lacking bone. The molecular and developmental basis for this assertion is yet to be tested. Subperichondral tissues in the endoskeleton of some chondrichthyans display mineralization patterns and histological and molecular features of bone, thereby challenging the notion that extant chondrichthyans lack endoskeletal bone. Additionally, the chondrichthyan endoskeleton demonstrates some unique features and others that are potentially homologous with other vertebrates, including a polygonal mineralization pattern, a trabecular mineralization pattern, and an unconstricted perichordal sheath. Because of the basal phylogenetic position of chondrichthyans among all other extant vertebrates with a mineralized skeleton, developmental and molecular studies of chondrichthyans are critical to flesh out the evolution of vertebrate skeletal tissues, but only a handful of such studies have been carried out to date. This review discusses morphological and molecular features of chondrichthyan endoskeletal tissues and cell types, ultimately emphasizing how comparative embryology and transcriptomics can reveal homology of mineralized skeletal tissues (and their cell types) between chondrichthyans and other vertebrates.


Development ◽  
2021 ◽  
Vol 148 (23) ◽  

The ability to derive and maintain pluripotent stem cells (PSCs) from livestock species in defined media conditions will contribute to many new research avenues, including comparative embryology and xenotransplantation. In a new paper in Development, Masaki Kinoshita, Toshihiro Kobayashi, Hiroshi Nagashima, Ramiro Alberio, Austin Smith and colleagues describe their three-component medium, which supports long-term propagation of PSCs in the absence of feeders or serum factors. We caught up with the authors to find out more about their research and their future plans.


2020 ◽  
Vol 8 (1) ◽  
pp. 377-393
Author(s):  
Ramiro Alberio

Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.


2018 ◽  
Vol 189 (2) ◽  
pp. 169-185 ◽  
Author(s):  
Stéphani K V Bonifácio ◽  
Ludimila L Moura ◽  
Juliana Marzinek ◽  
Orlando C De-Paula

2016 ◽  
Vol 12 (9) ◽  
pp. 20160509 ◽  
Author(s):  
S. D. Rundle ◽  
J. I. Spicer

There is a current surge of research interest in the potential role of developmental plasticity in adaptation and evolution. Here we make a case that some of this research effort should explore the adaptive significance of heterokairy, a specific type of plasticity that describes environmentally driven, altered timing of development within a species. This emphasis seems warranted given the pervasive occurrence of heterochrony, altered developmental timing between species, in evolution. We briefly review studies investigating heterochrony within an adaptive context across animal taxa, including examples that explore links between heterokairy and heterochrony. We then outline how sequence heterokairy could be included within the research agenda for developmental plasticity. We suggest that the study of heterokairy may be particularly pertinent in (i) determining the importance of non-adaptive plasticity, and (ii) embedding concepts from comparative embryology such as developmental modularity and disassociation within a developmental plasticity framework.


2016 ◽  
Vol 6 (8) ◽  
pp. 168-181
Author(s):  
Oleh Pylypchuk

The article tells about the beginning of the research activities of famous evolutionary biologist, darwinist, academician оf Petersburg Academy of Sciences Alexander Kovalevsky (1840–1901). It is noted that the scientific work of a scientist in the field of zoology, comparative embryology, physiology of invertebrates animals got worldwide acknowledgment.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Bernd Rosslenbroich

Recent developments in evolutionary biology, comparative embryology, and systems biology suggest the necessity of a conceptual shift in the way we think about organisms. It is becoming increasingly evident that molecular and genetic processes are subject to extremely refined regulation and control by the cell and the organism, so that it becomes hard to define single molecular functions or certain genes as primary causes of specific processes. Rather, the molecular level is integrated into highly regulated networks within the respective systems. This has consequences for medical research in general, especially for the basic concept of personalized medicine or precision medicine. Here an integrative systems concept is proposed that describes the organism as a multilevel, highly flexible, adaptable, and, in this sense, autonomous basis for a human individual. The hypothesis is developed that these properties of the organism, gained from scientific observation, will gradually make it necessary to rethink the conceptual framework of physiology and pathophysiology in medicine.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84115 ◽  
Author(s):  
Nami Okubo ◽  
Takuma Mezaki ◽  
Yoko Nozawa ◽  
Yoshikatsu Nakano ◽  
Yi-Ting Lien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document