The Role of Peptides in Preventing Freeze-Thaw Injury

Author(s):  
J. D. Davies
Keyword(s):  
2013 ◽  
Vol 357-360 ◽  
pp. 939-943 ◽  
Author(s):  
Jian Gang Niu ◽  
Liang Yan ◽  
Hai Tao Zhai

Based on the coupling testing program of freeze-thaw and carbonation, the laboratory simulation test is carried out. The laws of carbonation depth of the fly ash concrete suffered the freeze-thaw cycle in different test modes and the influence of fly ash dosage on concrete carbonation depth after the freeze-thaw cycle are studied. Defining the influence coefficient of the freeze-thaw cycles on carbonation depth of concrete, the mechanism of coupling of freeze-thaw and carbonation is analyzed,and the role of freeze-thaw and carbonation in the coupling process are obtained.


2002 ◽  
Vol 357 (1423) ◽  
pp. 909-916 ◽  
Author(s):  
Dirk K. Hincha

Plants from temperate and cold climates are able to increase their freezing tolerance during exposure to low non–freezing temperatures. It has been shown that several genes are induced in a coordinated manner during this process of cold acclimation. The functional role of most of the corresponding cold–regulated proteins is not yet known. We summarize our knowledge of those cold–regulated proteins that are able to stabilize membranes during a freeze–thaw cycle. Special emphasis is placed on cryoprotectin, a lipid–transfer protein homologue that was isolated from cold–acclimated cabbage leaves and that protects isolated chloroplast thylakoid membranes from freeze–thaw damage.


2013 ◽  
Vol 47 (24) ◽  
pp. 14169-14177 ◽  
Author(s):  
Bahareh Asadishad ◽  
Subhasis Ghoshal ◽  
Nathalie Tufenkji
Keyword(s):  

2020 ◽  
Vol 14 (12) ◽  
pp. 4653-4673
Author(s):  
Lianyu Yu ◽  
Simone Fatichi ◽  
Yijian Zeng ◽  
Zhongbo Su

Abstract. The vadose zone is a zone sensitive to environmental changes and exerts a crucial control in ecosystem functioning and even more so in cold regions considering the rapid change in seasonally frozen ground under climate warming. While the way in representing the underlying physical process of the vadose zone differs among models, the effect of such differences on ecosystem functioning and its ecohydrological response to freeze–thaw cycles are seldom reported. Here, the detailed vadose zone process model STEMMUS (Simultaneous Transfer of Energy, Mass and Momentum in Unsaturated Soil) was coupled with the ecohydrological model Tethys–Chloris (T&C) to investigate the role of influential physical processes during freeze–thaw cycles. The physical representation is increased from using T&C coupling without STEMMUS enabling the simultaneous mass and energy transfer in the soil system (liquid, vapor, ice) – and with explicit consideration of the impact of soil ice content on energy and water transfer properties – to using T&C coupling with it. We tested model performance with the aid of a comprehensive observation dataset collected at a typical meadow ecosystem on the Tibetan Plateau. Results indicated that (i) explicitly considering the frozen soil process significantly improved the soil moisture/temperature profile simulations and facilitated our understanding of the water transfer processes within the soil–plant–atmosphere continuum; (ii) the difference among various representations of vadose zone physics have an impact on the vegetation dynamics mainly at the beginning of the growing season; and (iii) models with different vadose zone physics can predict similar interannual vegetation dynamics, as well as energy, water, and carbon exchanges, at the land surface. This research highlights the important role of vadose zone physics for ecosystem functioning in cold regions and can support the development and application of future Earth system models.


2021 ◽  
Author(s):  
Lianyu Yu ◽  
Yijian Zeng ◽  
Simone Fatichi ◽  
Zhongbo Su

<p>The vadose zone is a zone sensitive to environmental changes and exerts a crucial control in ecosystem functioning and even more so in cold regions considering the rapid change in the seasonally frozen ground under climate warming. While the way in representing the underlying physical process of the vadose zone differs among models, the effect of such differences on soil hydrothermal regimes, and then ecosystem functioning and its ecohydrological response to freeze–thaw cycles are seldom reported. Here, the detailed vadose zone process modeling framework STEMMUS (Simultaneous Transfer of Energy, Mass and Momentum in Unsaturated Soil) was coupled with the ecohydrological model Tethys–Chloris (T&C) to investigate the role of influential physical processes during freeze-thaw cycles. The physical representation is increased from using T&C coupling without STEMMUS enabling the simultaneous mass and energy transfer in the soil system (liquid, vapor, ice) – and with explicit consideration of the impact of soil ice content on energy and water transfer properties – to using T&C coupling with it. We tested model performance with the aid of a comprehensive observation dataset collected at a typical meadow ecosystem on the Tibetan Plateau. Results indicated that explicitly considering the frozen soil process and vapor flow significantly improved the soil moisture/temperature profile simulations and facilitated our understanding of the water transfer processes within the soil-plant-atmosphere continuum. We further demonstrated the linkage between the vadose zone physics-induced difference in soil hydrothermal regimes and the ecosystem water/carbon cycles. This research highlights the important role of vadose zone physics for ecosystem functioning in cold regions and can support the development and application of future Earth system models.</p>


Planta ◽  
2011 ◽  
Vol 234 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Markus Knaupp ◽  
Kumud B. Mishra ◽  
Ladislav Nedbal ◽  
Arnd G. Heyer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document