Responses of Plant Growth and Functioning to Changes in Water Supply in a Changing Climate

2007 ◽  
pp. 96-117 ◽  
Author(s):  
William J. Davies
2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Vladimir Ion ROTARU ◽  
Luxita RISNOVEANU

The growth of legume plants is usually improved by the rhizobacteria inoculation under low phosphorus (P) and alleviation of P nutrition plays important role in plant drought stress response. The aim of this study was to assess the comparative efficacy of two plant growth promoting rhizobacteria namely Burkholderia cepacia B36 and Enterobacter radicincitans D5/23T combined with two sources of phosphates in soybean (Glycine max L.) under low water supply. Plants were grown under P soluble versus insoluble P fertilization for comparing the effects of soybean inoculation on growth, uptake and use efficiency of phosphorus under moderate drought stress. At the beginning of flowering, half of plants was subjected to low water supply (35% water holding capacity, WHC) for 12 days while control plants were well watered - 70% WHC. The plants were harvested at the end of drought and physiological traits and P contents were analyzed. The inoculation treatments showed better plant growth and nutrient uptake when compared to uninoculated control. The application of the Burkholderia cepacia was more efficiently in terms plant growth than E. radicincitans especially under insoluble phosphates. Phosphorus concentrations of shoots and roots increased with both bacterial strains. The bacterial inoculation has much better stimulatory effect on nutrient uptake by soybean fertilized with insoluble phosphates. Study findings indicate that the combined application of PGPR (Burkholderia cepacia B36) and P amendments has the potential to improve P nutrition and growth of soybean cultivated on P-deficient soil under well-watered as well as moderate drought condition.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2012 ◽  
Vol 82 (5) ◽  
pp. 909-923 ◽  
Author(s):  
Lin Wu ◽  
François-Xavier Le Dimet ◽  
Philippe de Reffye ◽  
Bao-Gang Hu ◽  
Paul-Henry Cournède ◽  
...  

2020 ◽  
Vol 71 (8) ◽  
pp. 785
Author(s):  
Honghua He ◽  
Zekun Zhang ◽  
Rui Su ◽  
Zhigang Dong ◽  
Qing Zhen ◽  
...  

Plant growth is often constrained by low availability of water and phosphorus (P) in soils in arid and semi-arid areas. Aeolian sandy soils cover >90% of the sandy area of the Mu Us Sandy Land (MUSL) in Northwest China. These soils have low water- and nutrient-retention capacity, limiting their ability to support plant growth. Pisha sandstone, a type of loose rock widely distributed in the MUSL, is regarded as an environmental hazard because it easily weathers, resulting in severe soil erosion and water loss. However, the retention capacity of the aeolian sandy soil can be significantly improved through blending with Pisha sandstone. We investigated the impacts of water supply (35% and 70% of soil water-holding capacity) and P supply (0, 5 and 20 mg P kg–1 soil) on plant growth and P and nitrogen (N) nutrition by growing lucerne (Medicago sativa L.) in MUSL aeolian sandy soil amended or not with Pisha sandstone. Soil type and P supply had greater effects than water supply on lucerne growth and on P and N nutrition. Biomass accumulation and shoot P and N concentrations were increased by amending the aeolian sandy soil with Pisha sandstone and increasing P supply. The N:P ratios in shoots indicated that plant growth was limited by P but not by N. Aeolian sandy soil amended with Pisha sandstone and supplied with P at 5 mg kg–1 enhanced lucerne growth; this practice is feasible for pasture development in the MUSL.


1998 ◽  
Vol 78 (4) ◽  
pp. 571-576 ◽  
Author(s):  
B. R. Buttery ◽  
C. S. Tan ◽  
C. F. Drury ◽  
S. J. Park ◽  
R. J. Armstrong ◽  
...  

In field tests we have observed year-to-year differences in the severity of the effects of soil compaction on nodulation and growth of common bean; these differences appeared to be related to the amount of rainfall during the growing season. We decided to use better controlled conditions in the greenhouse, and extend the scope of the study to another legume crop and a different soil type, in order to investigate the hypothesis that copious water supply alleviates the adverse effects of soil compaction on nodulation and plant growth.The effects of two levels of soil compaction and of high and low water supply on the growth and nodulation of common bean and soybean were investigated in separate pot tests using a Fox sandy loam and a Brookston clay loam soil.Root growth of both species was severely restricted by dry compacted conditions. Plant growth as a whole was clearly reduced by both increased compaction and by reduced water supply, presumably mediated by the effects on root growth. The effect of reduced water supply was more severe in the highly compacted pots, and more severe in the clay loam than in the sandy loam.In the sandy loam, low moisture reduced nodule numbers and weights in both species, while increased bulk density reduced the numbers of nodules but not the dry weights. In the clay loam, nodule weights and numbers were very low, presumably, owing to high levels of nitrate, which may have resulted from mineralization of soil organic matter during storage.A generous supply of water obviously alleviated some of the adverse effects of soil compaction on plant growth. This is in general agreement with results of earlier field trials, where severity of the effects of soil compaction varied with the quantity of rainfall. Key words: Soybean, common bean, soil compaction, soil moisture, nodulation, bulk density


Author(s):  
Yu. O. Tararico ◽  
R. V. Saidak ◽  
Yu. V. Soroka

Relevance of research. In order to ensure energy independence and food security of the state in the context of current climate change trends, the importance of reclaimed territories is increasing. By objectively assessing the agro-resource potential of individual regions and developing a strategy for its rational use, it is possible to significantly improve the productivity, stability, environmental balance and economic efficiency of agro-ecosystems. Objective of research. The objective of the research is to assess the water supply of the territory of Ukraine under changing climate and establish the mechanism of its influence on the bioproductivity of agricultural lands, theoretically substantiate and elaborate perspective options for the development of bioenergy reclaimed agroecosystems and specify the research areas on the reassessment of rational use of water resources in optimal combination with other components of agricultural production in a rapidly changing climate. Research methodology. The estimation and forecasting of the conditions of water supply were carried out on the basis of the climate water balance (CWB). Spatial analysis of climate data and crop yields was performed by IDW interpolation using QGIS3 software. To determine the promising areas for the development of agricultural production systems the results of stationary field experiments were used, which were processed by conventional methods of system analysis. Promising scenarios for the development of reclaimed agroecosystems were created using multivariate computer simulation in the “Agroecosystem” software package. Research results and main conclusions. It was established that, compared to 1961-1990, the area with a water supply shortage increased from 56 to 60%, and the area of sufficient and excessive humidity, on the contrary, decreased from 33 to 24%. Provided that the general trend of increasing temperature in the territory of Ukraine continues, the share of agricultural lands with scarce water balance by 2050 may increase up to 67%, and by 2100 – up to 80% of their total area. It was found that grain production remains at the level of 1990 in the steppe zone due to almost annual lack of moisture while in the forest-steppe and Polissia regions it increased up to 80-90%. It is important that, even in the humid zone, the risks of adverse water and air conditions for soils increased significantly, particularly as regards the soils of light texture. Consequently, sustainable high-yield agriculture without the development and implementation of effective regional measures on improving water supply is becoming problematic in most of Ukraine. Based on computer simulation, it was proved that the transition of domestic agricultural production to the principles of balanced organic food production, industrial raw materials and bioenergy resources will dramatically increase the profitability of agricultural enterprises, improve the ecological state of the environment and create a comfortable living environment for rural population and substantially strengthen the food security and energy independence of the state. Prospects. To achieve high efficiency and competitiveness of the agroindustrial complex of Ukraine, it is necessary to carry out a comprehensive study on the reassessment of rational use of water resources in optimal combination with other components of agricultural production under rapidly changing climate. On this scientific basis, it is advisable to create a unified system of water management for the effective use of the state's land fund, in particular the reclaimed areas.


HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 816-822 ◽  
Author(s):  
Tuan Anh Le ◽  
Zoltán Pék ◽  
Sándor Takács ◽  
András Neményi ◽  
Hussein G. Daood ◽  
...  

Open field experiments were conducted to investigate the effects of plant growth promoting rhizobacteria (PGPR) biofertilizer on processing tomato, grown under three different irrigation regimes. The field effectiveness of rhizobacteria inoculation on total biomass, yield, water use efficiency (WUE), carotenoid, and ascorbic acid production was examined in 2015 and 2016. The experimental design used was randomized block and the number of replications was four for each treatment. There were three different irrigation regimes: rain-fed control (RF), deficit water supply (WS50), and optimum water supply (WS100), which was delivered by drip irrigation in accordance with daily evapotranspiration (ETc). The test was performed on the Uno Rosso F1 processing tomato hybrid. Red fruit were measured at harvest in August and high-performance liquid chromatography (HPLC) was used for analysis. We evaluated yield quantity and total carotenoids and their composition (lycopene and β-carotene) depending on water supplement in 2 years. The marketable yield varied between 14.7 t·ha−1 and 126.9 t·ha−1 depending on treatment. The average soluble solids content (SSC) of the treatments ranged from 3.0 to 8.4. The total carotenoid yields of the treatments ranged from 0.8 to 40.4 kg·ha−1 and the average lycopene yield of the treatments ranged from 0.6 to 34.1 kg·ha−1. The effect of PGPR treatment was clearly positive for harvested yield, but this effect only prevailed under irrigated conditions.


Sign in / Sign up

Export Citation Format

Share Document