Natural Products in Drug Discovery: Recent Advances

Author(s):  
Gordon M. Cragg ◽  
Paul G. Grothaus ◽  
David J. Newman
2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


2019 ◽  
Vol 24 (32) ◽  
pp. 3829-3841 ◽  
Author(s):  
Lakshmanan Loganathan ◽  
Karthikeyan Muthusamy

Worldwide, colorectal cancer takes up the third position in commonly detected cancer and fourth in cancer mortality. Recent progress in molecular modeling studies has led to significant success in drug discovery using structure and ligand-based methods. This study highlights aspects of the anticancer drug design. The structure and ligand-based drug design are discussed to investigate the molecular and quantum mechanics in anti-cancer drugs. Recent advances in anticancer agent identification driven by structural and molecular insights are presented. As a result, the recent advances in the field and the current scenario in drug designing of cancer drugs are discussed. This review provides information on how cancer drugs were formulated and identified using computational power by the drug discovery society.


2017 ◽  
Vol 18 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Alexiou Athanasios ◽  
Vairaktarakis Charalampos ◽  
Tsiamis Vasileios ◽  
Ghulam Ashraf

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Sign in / Sign up

Export Citation Format

Share Document