The Jiahu Site in the Huai River Area

2013 ◽  
pp. 194-212 ◽  
Author(s):  
Zhang Juzhong ◽  
Cui Qilong
Keyword(s):  
Author(s):  
Dongyang Xiao ◽  
Haipeng Niu ◽  
Jin Guo ◽  
Suxia Zhao ◽  
Liangxin Fan

The significant spatial heterogeneity among river basin ecosystems makes it difficult for local governments to carry out comprehensive governance for different river basins in a special administrative region spanning multi-river basins. However, there are few studies on the construction of a comprehensive governance mechanism for multi-river basins at the provincial level. To fill this gap, this paper took Henan Province of China, which straddles four river basins, as the study region. The chord diagram, overlay analysis, and carbon emission models were applied to the remote sensing data of land use to analyze the temporal and spatial patterns of carbon storage caused by land-use changes in Henan Province from 1990 to 2018 to reflect the heterogeneity of the contribution of the four basins to human activities and economic development. The results revealed that food security land in the four basins decreased, while production and living land increased. Ecological conservation land was increased over time in the Yangtze River Basin. In addition, the conversion from food security land to production and living land was the common characteristic for the four basins. Carbon emission in Henan increased from 134.46 million tons in 1990 to 553.58 million tons in 2018, while its carbon absorption was relatively stable (1.67–1.69 million tons between 1990 and 2018). The carbon emitted in the Huai River Basin was the main contributor to Henan Province’s total carbon emission. The carbon absorption in Yellow River Basin and Yangtze River Basin had an obvious spatial agglomeration effect. Finally, considering the current need of land spatial planning in China and the goal of carbon neutrality by 2060 set by the Chinese government, we suggested that carbon sequestration capacity should be further strengthened in Yellow River Basin and Yangtze River Basin based on their respective ecological resource advantages. For future development in Hai River Basin and Huai River Basin, coordinating the spatial allocation of urban scale and urban green space to build an ecological city is a key direction to embark upon.


2014 ◽  
Vol 955-959 ◽  
pp. 3887-3892 ◽  
Author(s):  
Huang He Gu ◽  
Zhong Bo Yu ◽  
Ji Gan Wang

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.


2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

2014 ◽  
Vol 29 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Bang-yi YU ◽  
Peng WU ◽  
Jue-yi SUI ◽  
Xing-ju YANG ◽  
Jin NI

2021 ◽  
Author(s):  
Shuai Chen ◽  
Xiaohong Ruan

Abstract Nitrate (NO3-N) load characteristics in consecutive dry years in the Huai River Basin (HRB), China, were examined using streamflow and NO3-N concentration data. The data set spanned 12 years including three consecutive dry years. Baseflow separation, load estimation, and nonparametric linear regression were applied to separate point source (PS), baseflow, and surface runoff NO3-N loads from the total load. The mean annual nonpoint source (NPS) load was 2.84 kg·ha−1·yr−1, accounting for 90.8% of the total load. Baseflow contributed approximately one-fourth of the natural runoff and half of the NPS load. The baseflow nitrate index (i.e., the ratio of baseflow NO3-N load to total NPS NO3-N load) was 25.4% higher in consecutive dry years than in individual dry years. This study demonstrated that baseflow is the preferential hydrological pathway for NO3-N transport in the HRB and that baseflow delivers a higher NO3-N percentage to streams under long-term drought than under short-term drought. This study highlights the alarming evidence that continuous drought caused by climate change may lead to a higher rate of nitrogen loss in agricultural watersheds.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunan Zhang ◽  
Guoping Sun ◽  
Dong Zhang ◽  
Xiaoyan Yang ◽  
Xiaohong Wu

Dogs served in a variety of capacities in prehistory. After their domestication in Paleolithic hunter-gatherer societies, the emergence of agriculture shifted their partnerships with people. However, the associations between dogs and early farmers are not readily visible in the archaeological record. In the present study, dog coprolites, uncovered from two groups of early agricultural societies in China during the Neolithic Age, the early rice agricultural site of Tianluoshan in the lower Yangtze River, and three early millet-rice mixed agricultural sites of Shuangdun, Yuhuicun, and Houtieying along the middle Huai River, were examined based on the comparisons of lipid and palynological results to reveal different relationships of dogs and humans. The Tianluoshan dogs showed a plant-dominated diet with higher contents of plant sterols and fatty alcohols with longer chain lengths. Dogs may have lived on foraging or been provisioned with refuse for the cleanness purpose. On the contrary, dogs from the sites of Shuangdun, Yuhuicun, and Houtieying showed a meat-dominated diet with higher proportions of animal sterols and short-chain fatty alcohols. It most probably referred to their assistance in hunting and thus being provisioned with meat. Furthermore, activity areas of the dogs also reflect different deployment strategies and agricultural systems, evidenced by pollen spectra from the coprolites. Dogs at Tianluoshan mostly appeared in the rice field area, in correspondence with the labor-consuming rice cultivation as the main targeted resource, showing their participation in daily agricultural activities. On the other hand, high concentrations of pollen from forest and grassland revealed that hunting dogs played a regular role in the early millet-rice mixed farming societies, probably related to the importance of hunting activities in the daily subsistence.


2013 ◽  
Vol 10 (3) ◽  
pp. 2665-2696 ◽  
Author(s):  
D. H. Yan ◽  
D. Wu ◽  
R. Huang ◽  
L. N. Wang ◽  
G. Y. Yang

Abstract. According to the Chinese climate divisions and the Huang-Huai-Hai River basin digital elevation map, the basin is divided into seven sub-regions by means of cluster analysis of the basin meteorological stations using the self-organizing map (SOM) neural network method. Based on the daily precipitation data of 171 stations for the years 1961–2011, the drought frequency changes with different magnitudes are analyzed and the number of consecutive days without precipitation is used to identify the drought magnitudes. The first precipitation intensity after a drought period is analyzed with the Pearson-III frequency curve, then the relationship between rainfall intensity and different drought magnitudes is observed, as are the drought frequency changes for different years. The results of the study indicated the following: (1) the occurrence frequency of different drought level shows an overall increasing trend; there is no clear interdecadal change shown, but the spatial difference is significant. The occurrence frequencies of severe and extraordinary drought are higher on the North China Plain, Hetao Plains in Ningxia-Inner Mongolia, as well as on the Inner Mongolia and the Loess Plateaus, and in the Fen-Wei Valley basin. (2) As the drought level increases, the probability of extraordinary rainstorm becomes lower, and the frequency of occurrence of spatial changes in different precipitation intensities vary. In the areas surrounding Bo Sea, the Shandong Peninsula and the Huai River downstream, as the drought level increases, the occurrence frequency of different precipitation intensities first shows a decreasing trend, which becomes an increasing trend when extraordinary drought occurs. In the middle and upper reaches of the Huai River basin, on the Hai River basin piedmont plain and Hetao Plains in Ningxia-Inner Mongolia, Inner Mongolia and Loess Plateaus, and in the Fen-Wei Valley basin, the probability of the different precipitation intensities shows an overall decreasing trend. The mountains with high attitude and Tibetan Plateau are located at high altitudes where the variation of different precipitation intensities with the increase in drought level is relatively complex. (3) As the drought frequency increases, areas I, II and V which are located on the coastal and in the river basin are vulnerable to extreme precipitation processes; areas III, IV, VI and VII are located in the inland area where heavier precipitation is not likely to occur.


Sign in / Sign up

Export Citation Format

Share Document