Prognostic Breeding: A New Paradigm for Crop Improvement

2013 ◽  
pp. 297-347 ◽  
Author(s):  
Vasilia A. Fasoula
2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjana Kaul ◽  
Malvi Choudhary ◽  
Suruchi Gupta ◽  
Manoj K. Dhar

Dynamic consortium of microbial communities (bacteria, fungi, protists, viruses, and nematodes) colonizing multiple tissue types and coevolving conclusively with the host plant is designated as a plant microbiome. The interplay between plant and its microbial mutualists supports several agronomic functions, establishing its crucial role in plant beneficial activities. Deeper functional and mechanistic understanding of plant-microbial ecosystems will render many “ecosystem services” by emulating symbiotic interactions between plants, soil, and microbes for enhanced productivity and sustainability. Therefore, microbiome engineering represents an emerging biotechnological tool to directly add, remove, or modify properties of microbial communities for higher specificity and efficacy. The main goal of microbiome engineering is enhancement of plant functions such as biotic/abiotic stresses, plant fitness and productivities, etc. Various ecological-, biochemical-, and molecular-based approaches have come up as a new paradigm for disentangling many microbiome-based agromanagement hurdles. Furthermore, multidisciplinary approaches provide a predictive framework in achieving a reliable and sustainably engineered plant-microbiome for stress physiology, nutrient recycling, and high-yielding disease-resistant genotypes.


Author(s):  
Tariq Shehzad ◽  
Kazutoshi Okuno

Abstract This chapter overviews the approaches to and application of quantitative trait locus (QTL) mapping and positional cloning of genes controlling important traits related to drought tolerance in sorghum (Sorghum bicolor), which ultimately yields crop improvement and genetic modification. The use of high-throughput phenotyping will help better understand the mechanism involved in response to drought stress by plants. The new paradigm of scientific research should focus on the integration of physiology, genetics, genomics, soil characteristics and breeding to deal with the challenges of food security in the coming years.


2017 ◽  
Vol 1 (1) ◽  
pp. 3-4 ◽  
Author(s):  
Carolyn A. Young ◽  
Linda Kinkel

In 2014, members of The American Phytopathological Society (APS) began to consider strategically the ways in which the accelerating flow of diverse types of complex data are fundamentally changing the ways in which we study, think about, and manage plant systems. Advancing technical capacities to generate plant, microbial and other organismal ‘omics’, environmental, and data produced at very fine spatial scales, coupled with expanding capabilities to integrate data across diverse scales of space and time, are providing novel insights into the networks of interaction that mediate plant productivity. In response to these enormous advances in technical capacities, APS created a Phytobiomes Initiative to chart a path forward. In 2015, APS brought together a diverse community of scientists in Washington DC for a strategically timed meeting to spearhead a new paradigm for crop improvement focusing on phytobiome-based approaches. The success of the human microbiome project paved the way, challenging us to push the boundaries to expand our knowledge of sustainable agriculture to meet the demands of feeding the growing global population. This meeting was instrumental in clarifying the vision of phytobiomes research, encapsulating systems-level understanding of diverse interacting components spanning multiple disciplines, species, and environments. To fully appreciate the breadth of scope of the Phytobiomes Initiative, we encourage you to review the Phytobiomes Roadmap ( http://www.phytobiomes.org/roadmap ), released in March 2016. The Phytobiomes journal was launched as an integral but independent part of the Phytobiomes Initiative. The Phytobiomes journal provides an international platform for fundamental, translational, and integrated research that accomplishes the overarching objective of offering a new vision for agriculture in which sustainable crop productivity is achieved through a systems-level understanding of the diverse interacting components of the phytobiome. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license .


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


Author(s):  
R. B. Austin ◽  
R. B. Flavell ◽  
I. E. Henson ◽  
H. J. B. Lowe

Author(s):  
Markus Krüger ◽  
Horst Krist

Abstract. Recent studies have ascertained a link between the motor system and imagery in children. A motor effect on imagery is demonstrated by the influence of stimuli-related movement constraints (i. e., constraints defined by the musculoskeletal system) on mental rotation, or by interference effects due to participants’ own body movements or body postures. This link is usually seen as qualitatively different or stronger in children as opposed to adults. In the present research, we put this interpretation to further scrutiny using a new paradigm: In a motor condition we asked our participants (kindergartners and third-graders) to manually rotate a circular board with a covered picture on it. This condition was compared with a perceptual condition where the board was rotated by an experimenter. Additionally, in a pure imagery condition, children were instructed to merely imagine the rotation of the board. The children’s task was to mark the presumed end position of a salient detail of the respective picture. The children’s performance was clearly the worst in the pure imagery condition. However, contrary to what embodiment theories would suggest, there was no difference in participants’ performance between the active rotation (i. e., motor) and the passive rotation (i. e., perception) condition. Control experiments revealed that this was also the case when, in the perception condition, gaze shifting was controlled for and when the board was rotated mechanically rather than by the experimenter. Our findings indicate that young children depend heavily on external support when imagining physical events. Furthermore, they indicate that motor-assisted imagery is not generally superior to perceptually driven dynamic imagery.


Author(s):  
Sarah Schäfer ◽  
Dirk Wentura ◽  
Christian Frings

Abstract. Recently, Sui, He, and Humphreys (2012) introduced a new paradigm to measure perceptual self-prioritization processes. It seems that arbitrarily tagging shapes to self-relevant words (I, my, me, and so on) leads to speeded verification times when matching self-relevant word shape pairings (e.g., me – triangle) as compared to non-self-relevant word shape pairings (e.g., stranger – circle). In order to analyze the level at which self-prioritization takes place we analyzed whether the self-prioritization effect is due to a tagging of the self-relevant label and the particular associated shape or due to a tagging of the self with an abstract concept. In two experiments participants showed standard self-prioritization effects with varying stimulus features or different exemplars of a particular stimulus-category suggesting that self-prioritization also works at a conceptual level.


2003 ◽  
Vol 58 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Carol J. Gill ◽  
Donald G. Kewman ◽  
Ruth W. Brannon

1995 ◽  
Vol 40 (11) ◽  
pp. 1072-1073
Author(s):  
Michael J. Lambert ◽  
R. Scott Nebeker

1981 ◽  
Vol 26 (7) ◽  
pp. 507-509 ◽  
Author(s):  
Craig T. Ramey ◽  
David MacPhee

Sign in / Sign up

Export Citation Format

Share Document