Direct Excitation Ln(III) Luminescence Spectroscopy to Probe the Coordination Sphere of Ln(III) Catalysts, Optical Sensors and MRI Agents

Author(s):  
Janet R. Morrow ◽  
Sarina J. Dorazio
2009 ◽  
Vol 92 (11) ◽  
pp. 2330-2348 ◽  
Author(s):  
Christopher M. Andolina ◽  
Ryan A. Mathews ◽  
Janet R. Morrow

2021 ◽  
Vol 11 (17) ◽  
pp. 7849
Author(s):  
Francisco Ferrero Martín ◽  
Marta Valledor Llopis ◽  
Juan C. Campo Rodríguez ◽  
Alberto López Martínez ◽  
Ana Soldado Cabezuelo ◽  
...  

There is a growing interest in the development of sensitive, portable, and low-cost instrumentation for optical chemical (bio)sensing. Such instrumentation can allow real-time decision-making for industry, farmers, and researchers. The combination of optical fiber schemes, luminescence spectroscopy techniques, and new materials for sensor immobilization has allowed the growth of optical sensors. This article focuses on the development of low-cost optoelectronic instrumentation and measurement strategies for optical chemical (bio)sensing. Most of the articles in this field have focused on the chemical sensors themselves, although few have covered the design process for optoelectronic instrumentation. This article tries to fill this gap by presenting designs for real applications, as carried out by the authors. We also offer an introduction to the optical devices and optical measurement techniques used in this field to allow a full understanding of the applications.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Marie Urban ◽  
Alban Fouasson-Chailloux ◽  
Isabelle Signolet ◽  
Christophe Colas Ribas ◽  
Mathieu Feuilloy ◽  
...  

Abstract. Summary: Background: We aimed at estimating the agreement between the Medicap® (photo-optical) and Radiometer® (electro-chemical) sensors during exercise transcutaneous oxygen pressure (tcpO2) tests. Our hypothesis was that although absolute starting values (tcpO2rest: mean over 2 minutes) might be different, tcpO2-changes over time and the minimal value of the decrease from rest of oxygen pressure (DROPmin) results at exercise shall be concordant between the two systems. Patients and methods: Forty seven patients with arterial claudication (65 + / - 7 years) performed a treadmill test with 5 probes each of the electro-chemical and photo-optical devices simultaneously, one of each system on the chest, on each buttock and on each calf. Results: Seventeen Medicap® probes disconnected during the tests. tcpO2rest and DROPmin values were higher with Medicap® than with Radiometer®, by 13.7 + / - 17.1 mm Hg and 3.4 + / - 11.7 mm Hg, respectively. Despite the differences in absolute starting values, changes over time were similar between the two systems. The concordance between the two systems was approximately 70 % for classification of test results from DROPmin. Conclusions: Photo-optical sensors are promising alternatives to electro-chemical sensors for exercise oximetry, provided that miniaturisation and weight reduction of the new sensors are possible.


2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


2004 ◽  
Vol 9 (1) ◽  
pp. 55-63
Author(s):  
V. Kleiza

Light transmission in the reflection fiber system, located in external optical media, has been investigated for application as sensors. The system was simulated by different models, including external cavity parameters such as the distance between light emitting and receiving fibers and mirror positioning distance. The sensitivity to a linear displacement of the sensors was studied as a function of the distance between the tips of the light emitting fiber and the center of the pair reflected light collecting fibers, by positioning a mirror. Physical fundamentals and operating principles of the advanced fiber optical sensors were revealed.


Sign in / Sign up

Export Citation Format

Share Document