Marginal Zone Lymphoma and Other Related Post Germinal Center B Cell Lymphoproliferative Disorders of The Skin

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2050-2050
Author(s):  
Tomomi Sakai ◽  
Momoko Nishikori ◽  
Masaharu Tashima ◽  
Ryo Yamamoto ◽  
Toshio Kitawaki ◽  
...  

Abstract BCL2/IGH translocation is a hallmark of follicular lymphoma and diffuse large B-cell lymphoma of germinal center B-cell type. Although being a strong determinant of these histological subtypes, this translocation is considered to be insufficient by itself and further gene alterations are necessary for cellular transformation. In Eμ-BCL2 transgenic (Tg) mice, B-lineage cells are increased by several-fold compared to wild-type (WT) mice, but only 5–15 % of them develop disease in the first year of life. To clarify how the BCL2 translocation contributes to the development of specific lymphoma subtypes, we created two types of chimeric mouse models to characterize the biological features of BCL2-overexpressing B cells in normal individuals. First, we introduced CD19 promoter-driven BCL2 and its mutant genes to a minor population of murine bone marrow cells by using a lentiviral vector system and transplanted into irradiated mice. BCL2-overexpressing B cells showed increased follicular and reduced marginal zone populations. The same phenotypic shift was observed in B cells introducing BCL2-Y28F mutant that retained anti-apoptotic function, but a defective mutant BCL2-G142A and a mock vector did not affect B-cell phenotype. Additionally, BCL2-introduced B cells showed decreased cell size compared to those introduced BCL2-G142A and mock vectors. To assess the functional alteration of BCL2-overexpressing B cells, TNP-Ficoll binding experiment was performed. The result showed diminished T-cell independent response in parallel with decreased marginal zone B cells. The low transformation frequency of B cells in Eμ-BCL2 Tg mice has been partly explained by their propensity to reside in the G0 phase of the cell cycle (reviewed in Oncogene, 18:5268,1999). We hypothesized that the microenvironment of B cells in Eμ-BCL2 Tg mice might be altered by abnormal B cells themselves. To evaluate the influence of the different microenvironments on BCL2-overexpressing B cells, we next made Eμ-BCL2/CAG-GFP double Tg mice and transferred their bone marrow mononuclear cells into WT or Eμ-BCL2 Tg mice. Blastic cell population of BCL2+GFP+ B cells was larger in those transferred to WT mice compared to those transferred to Eμ-BCL2 Tg mice, regardless of the same phenotypic preference toward follicular B cells. BrdU uptake experiments demonstrated continuous cell cycle progression of the BCL2+GFP+ B cells in WT mice but repressed cell cycle of those in Eμ-BCL2 Tg mice. In immunohistochemical analysis, splenic follicles were disorganized with reduced follicular dendritic cells and inadequate T cell accumulation in Eμ-BCL2 Tg mice. Functional impairment of splenic follicles in Eμ-BCL2 Tg mice might be caused by decreased marginal zone B cell subset, as the antigen capture and delivery by marginal zone B cells was reported to play an important role in the development of follicular dendritic cells. To understand the fate of BCL2-overexpressing B cells after stimulation, we finally assessed their terminal differentiation capacity in vitro. Plasma cell differentiation was suppressed in B cells derived from Eμ-BCL2 Tg mice under either LPS or anti-IgM antibody stimulation. BCL2 is reported to impede the activity of transcription factor NF-AT (Proc Natl Acad Sci93:9545,1996; Nature386:728,1997), and we found that calcineurin inhibitor FK506 suppressed plasma cell differentiation of WT B cells. Gene regulation patterns of the Eμ-BCL2+ B cells were similar to B cells stimulated in the presence of FK506 as well, suggesting that repressed terminal differentiation in Eμ-BCL2+ B cells was partly caused by the suppressed activity of NF-AT. In summary, BCL2-deregulated B cells preferentially differentiate into follicular B cells, and as a result of decreased terminal differentiation in addition to their anti-apoptotic property, they may be obliged to survive and recirculate as memory B cells, and accumulate genetic abnormalities while they repeatedly pass through the germinal center. As the germinal center is the particular site where they can counterbalance the cell cycle-retarding effect of BCL2, it may be a specific place for generating lymphoma triggered by BCL2/IGH translocation. Our results emphasize the importance of the microenvironment of pre-malignant cells during transformation process, and suggest that a simple transgenic mouse model may not be always appropriate for the study of oncogenesis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2667-2667 ◽  
Author(s):  
Marzia Varettoni ◽  
Luca Arcaini ◽  
Silvia Zibellini ◽  
Emanuela Boveri ◽  
Sara Rattotti ◽  
...  

Abstract Abstract 2667 Waldenström Macroglobulinemia (WM) is a B-cell lymphoproliferative disorder characterized by bone marrow infiltration by lymphoplasmacytic lymphoma associated with a monoclonal component of IgM type in the serum. WM is often preceded by an IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The cumulative probability of progression of IgM-MGUS to WM or to other lymphoproliferative disorders is approximately 1.5% per year. Other mature B-cell neoplasms such as splenic marginal zone lymphoma (SMZL) and B-cell chronic lymphoproliferative disorders (B-CLPD) can carry an IgM monoclonal component and should therefore be considered in differential diagnosis with WM. In a study based on parallel sequencing of the whole genome of lymphoplasmacytic cells and paired normal tissue from WM patients, Treon et al (Blood. 2011;118:Abstract 300) have identified a highly recurrent somatic mutation with oncogenic activity in the myeloid differentiation primary response (MYD88) gene, leading to a change from leucine to proline at position 265 of the aminoacid sequence [MYD88 (L265P)]. Targeted Sanger resequencing showed MYD88 (L265P) in 90% of WM patients, but only in a minority of patients with IgM-MGUS or other mature B-cell neoplasms such as SMZL. We developed an allele-specific PCR for the MYD88 (L265P) mutation, and studied 58 patients with WM, 77 with IgM-MGUS, 84 with splenic marginal zone lymphoma (SMZL) and 52 with B-cell chronic lymphoproliferative disorders (B-CLPD). DNA was obtained from bone marrow cells (n=204) and peripheral blood (n=67). The aims of this study were: i) to assess the prevalence of the mutation in WM, IgM-MGUS, SMZL, and B-CLPD; ii) to analyze the relationship between MYD88 (L265P) mutation and clinical phenotype; iii) to evaluate the impact of the mutation on the risk of progression from IgM-MGUS WM or other lymphoproliferative disorders. The MYD88 (L265P) mutation was detected in 58/58 (100%) patients with WM, either asymptomatic (n=39) or symptomatic (n=18), and in 36/77 (47%) patients with IgM-MGUS. In addition, it was detected in 5/84 (6%) patients with SMZL and in 3/52 (6%) with B-CLPD; of these MYD88 (L265P)-positive subjects, 4 SMZL and 2 B-CLPD patients carried a serum IgM monoclonal component, while the remaining B-CLPD patient carried a double (IgM and IgG) monoclonal component. Compared with IgM-MGUS patients with wild-type MYD88, those carrying MYD88 (L265P) had significantly higher levels of IgM (P<.0001), lower levels of IgG (P=.04) and IgA (P=.04), and higher incidence of Bence-Jones proteinuria at diagnosis (P=.002). During the follow-up, 9 patients with IgM-MGUS progressed to WM (7 cases) or to marginal zone lymphoma (2 cases). Using a case-control approach, the risk of evolution of patients with MYD88 (L265P) was significantly higher as compared to that of patients with wild-type MYD88 sequence (OR 4.7, 95% confidence interval 0.8–48.7, P=.047). In conclusion, the findings of this study indicate that: i) the allele-specific PCR we developed is able to detect the MYD88 (L265P) mutation in all patients with WM and in nearly half the patients with IgM-MGUS, and therefore represents a useful diagnostic tool; ii) MYD88 (L265P) is an uncommon molecular lesion in SMZL and in B-CLPD, but is associated with an IgM monoclonal component in the few positive patients, suggesting that some cases of B-CLPD might be included in the spectrum of WM; iii) in IgM-MGUS, the mutation is associated with greater disease burden and higher risk of disease progression, and therefore represents a useful prognostic marker. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2397-2397
Author(s):  
Gabriel Brisou ◽  
Laurent Jallades ◽  
Alexandra Traverse-Glehen ◽  
Francoise Berger ◽  
Aurélie Verney ◽  
...  

Abstract Abstract 2397 B cells can undergo at least two differentiation pathways, dependent of T cells or not, starting from follicular or marginal zone B cells respectively. The T-independent response, less understood than the germinal center reaction, is triggered by specific antigens and arises from marginal zone B cells. During this development, some B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR), triggered by the same DNA editing enzyme called Activation Induced Cytidine Deaminase (AID). The splenic marginal zone lymphoma (SMZL) is a rare lymphoproliferative disorder characterized by a clonal expansion of B cells in the marginal zone of the spleen. These B-cells underwent SHM in roughly 60% of the cases but nearly none underwent CSR. These observations suggest that tumor clones originate from a particular activated B cell subset not transiting through the germinal center. In order to confirm this hypothesis, we focused our work on the status and impact of AID in this disease and worked on purified B cells extracted from spleen of well-characterized SMZL cases. We determined AID status by quantitative RT-PCR analysis on 27 SMZL samples and compared it with 5 controls. In the SMZL group the relative level of expression of AID is heterogeneous but two subgroups could be distinguished: one considered as expressing AID (14 cases out of the 27 analyzed), the remaining considered as not expressing AID. When we compared AID expression rate with occurrence of SHM and CSR, no clear correlation between AID expression and presence of SHM or CSR could be observed suggesting that AID, when expressed, is dysfunctional. To address this hypothesis, we first analyzed AID protein by immunohistochemistry and a good correlation between IHC signal and AID mRNA expression level has been observed. As AID gene was not mutated, we next focused our work on AID mRNA splicing variants as these variants exhibit different functions according to the domain of the protein they contain in a murine model. We found that SMZL B cells express various splicing variants of AID mRNA, some of those variants corresponding to the full length isoform (n = 6/17), and other variants corresponding to AID-ΔE4a (n = 2/17) or AID-ΔE4 (n = 7/17) isoforms known to be expressed in normal germinal center B cells as well as in Chronic Lymphocytic and Acute Lymphoblastic Leukemia. These findings indicate that although expressed at the mRNA and protein levels, AID may not be fully functional in SMZL cases. Finally we addressed the potential clinical significance of AID expression. We identified for that purpose a group of “progressive SMZL” patients that had received immuno-chemotherapy after splenectomy because of a significant risk of progression or transformation into aggressive large B cell lymphoma (n = 8/27) pre-empting outcome differences. We found a higher proportion of AID expressing patients in the defined “progressive SMZL” group (n = 7/8) as compared to the proportion found in the “indolent SMZL” group (n = 5/14, p = 0,03). Altogether, this data suggest that the B cell clone leading to SMZL originate from the marginal zone and support the hypothesis of a lymphoproliferative disorder affecting the T-independent response. AID expression in SMZL may reflect an advanced stage of the disease and could be correlated with the evolution of the lymphoma into a more clinically or pathologically aggressive form. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1589-1589 ◽  
Author(s):  
Miguel Alcoceba ◽  
Elena Sebastián ◽  
Ana Balanzategui ◽  
Luis Marín ◽  
Santiago Montes-Moreno ◽  
...  

Abstract Abstract 1589 Introduction: Acquired potentially N-glycosylation sites are produced by somatic hypermutation (SHM) in the immunoglobulin (Ig) variable region. This phenomenon is produced in ∼9% of normal B-cells and seems to be related to certain B-cell lymphoproliferative disorders (B-LPDs) such as follicular lymphoma (FL, 79%), endemic Burkitt lymphoma (BL, 82%) and diffuse large B-cell lymphoma (DLBCL, 41%). These data suggest that new potential N-glycosylation sites could be related to germinal center B (GCB)-LPDs. By contrast, in other B-LPDs, such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), MALT lymphoma, Waldenström macroglobulinemia (WM) or multiple myeloma (MM), these modifications have not been analyzed in deep. Aims: To evaluate the acquisition of potential N-glycosylation sites in B-LPDs, including immunohystochemical DLBCL subtypes (GCB and non-GCB) and specific non-GCB-LPDs, such as hairy cell leukemia (HCL), splenic marginal-zone lymphoma (SMZL), CLL, MCL, ocular extranodal marginal zone lymphoma (OAEMZL), MM and WM. Patients: A total of 953 sequences (203 from our group and 750 previously published sequences) of B-LPDs were included. Diagnosis distribution was as follows: DLBCL (n=235), MCL (n=235), CLL (n=166), MM (n=96), OAEMZL (n=82), SMZL (n=68), WM (n=38) and HCL (n=33). Methods: Acquired N-glycosylation sites were counted according to the sequence Asn-X-Ser/Thr, where X could be any amino acid except Pro. Natural motifs in germline sequences of IGHV1–08, IGHV4–34 e IGHV-5a were not considered. Fisher test was used to perform comparisons between groups. To distinguish DLBCL biological subtypes (GCB and non-GCB DLBCL), Hans' algorithm was used. Results: A total of 83 out of the 235 DLBCL cases acquired at least a new N-glycosylation site, a higher value than in normal B-cells (35% vs. 9%, p<0.0001). Higher incidence of these motifs in the group of GCB as compared to non-GCB DLBCL were observed (52% vs. 20%, p<0.0001). Those cases diagnosed of HCL, CLL, MCL, MM, WM, OAEMZL and SMZL presented a reduced number of new N-glycosylation sites, showing similar values than normal B-cells (range 3–18%, p=ns). Conclusions: We described for the first time the pattern of N-glycosylation in HCL, SMZL, OAEMZL and in the immunohystochemical DLBCL subtypes, where the GCB-DLBCL showed a higher number of new N-glycosylation sites with respect to non-GCB DLBCL and other non-GCB-LPDs. The presence of novel N-glycosylation sites in FL, BL and in GCB-DLBCL strongly suggests that these motifs are characteristic of the germinal center B-LPDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4806-4806
Author(s):  
William Fricke

Abstract CD11b is well known as an integrin, Mac-1, is often complexed with CD18, and is found on monocytes, granulocytes, and natural killer cells. It also serves as a receptor for iC3b. However, its occurrence in B cell chronic lymphoproliferative disorders is not generally recognized and has not been fully evaluated. To address this issue, a series of B cell leukemias and lymphomas referred for primary diagnosis was evaluated for the presence of CD11b. The purpose was to determine the frequency of its expression on these tumors and to evaluate its diagnostic value. Consecutive cases referred for flow cytometry as possible lymphoproliferative disease were analyzed. Included were bone marrow, peripheral blood, and lymph nodes. All cases were diagnosed according to the WHO classification based on immunophenotypic, morphologic, and clinical findings. The morphologic criteria of Melo (1986) and Bennett (1989) were used for classification of chronic lymphocytic leukemia (CLL), CLL/prolymphocytic leukemia (CLL/PLL), mixed CLL, and PLL. Cases identified as not related to chronic lymphocytic leukemia or prolymphocytic leukemia were recorded but not further analyzed. Similarly, lymph node and spleen-based tumors were excluded from the final analysis. CD11b was present on cells from 32 of 123 cases, including occasional follicular lymphoma, (5/35); mantle cell lymphoma, (1/8); diffuse large B cell lymphoma, (3/9); hairy cell leukemia, (3/5); multiple myeloma, (1/2); lymphoplasmacytic lymphoma, (2/2); nodal marginal zone lymphoma, 0/1); and splenic marginal zone lymphoma, (1/1). However, it was most consistently expressed on CLL that contained increased numbers of prolymphocytes or large cells and on PLL. A total of 16 such cases were found. Morphologic assessment showed them to include 8 CLL/PLL, 3 mixed CLL, 4 PLL, and 1 typical CLL. The typical CLL case included both large cells and prolymphocytes but did not have more than 10% PLs. Five of the 16 cases (31%) were negative for CD5, CD23, and CD38 but were positive for FMC-7. In contrast, the other 11 cases were all CD5(+) and CD23(+); 3/11 were positive for CD38; and 5/11 were positive for FMC-7. Forty-five CLLs also were identified during the study, of which 27 had sufficient data for comparison. Twenty-six of the 27 CLLs were morphologically typical. The remaining case was mixed CLL. All of the CLLs were CD11b(−), CD5(+) and CD23(+); 15/43 were CD38(+), and 6/43 were FMC-7(+). The findings show that CD11b is expressed on chronic B cell lymphoproliferative disorders. In particular, it is expressed on almost all CLL cases that contain large cells or prolymphocytes and on PLL. Inclusion of CD11b in routine screening panels of possible chronic B cell leukemiaa will improve diagnosis of these disorders.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4250-4250 ◽  
Author(s):  
Davide Rossi ◽  
Alessio Bruscaggin ◽  
Sara Monti ◽  
Stefania Cresta ◽  
Rosella Famà ◽  
...  

Abstract Background Almost 60% cases of splenic marginal zone lymphoma (SMZL) cases harbor molecular lesions affecting signalling pathways involved in normal marginal zone (MZ) differentiation, including the NOTCH pathway, the NF-kB pathway, the toll-like receptor (TLR) pathway and the B-cell receptor (BCR) pathway. However, little is known with regard to these lesions in other indolent B-cell lymphoproliferative disorders mimicking SMZL. Methods Candidate gene mutations (NOTCH2, NOTCH1, BIRC3, TNFAIP3, TRAF3, IKBKB, MYD88, CD79A, CD79B, CARD11) were investigated in 60 indolent B-cell lymphoproliferative disorders, including nodal marginal zone lymphoma (NMZL=33), monoclonal B-cell lymphocytosis showing a MZL-like phenotype (MZL-like MBL=16), and variant hairy cell leukemia (vHCL=11). In all cases, tumor representation was >50% in order to allow the detection of clonal lesions. All cases lacked the BRAF V600E mutation as assessed by AS-PCR. Results Overall, the genetics of NMZL and MZL-like MBL was consistent with that of SMZL, suggesting the involvement of a common oncogenic pathway in these disorders. Among NMZL, 51% (17/33) of cases were characterized by mutually exclusive genetic lesions affecting MZ differentiation genes, including NOTCH2 stabilizing mutations in 24% (8/33) of cases, TNFAIP3 disrupting mutations in 12% (4/33), MYD88 activating mutations in 12% (4/33), and NOTCH1, TRAF3 and BIRC3 mutations in 3% (1/33) of cases each. Among MZL-like MBL, 37% (6/16) of cases harbored mutually exclusive lesions of MZ genes, including MYD88 mutations in 25% (4/16) of cases, NOTCH2 mutations in 12% (2/16), and TNFAIP3 and CD79B mutations in 6% (1/16) of cases each. On the contrary, all cases (n=11) of vHCL lacked mutations of NOTCH, NF-kB, TLR or BCR genes, suggesting that none of these signaling pathways plays a relevant role in this disease. Among NMZL, MYD88 mutations were enriched among cases harboring an IgM type monoclonal component (3/4, 75% vs 1/18, 5%, p=.010) and showing cytological clues of plasma cell differentiation of lymph node tumor cells (3/6, 50% vs 0/9; p=.040). NOTCH2 mutations did not correlate with any pathologic feature (i.e. lymph node pattern of infiltration, presence of monocytoid B cells, immunoglobulin gene usage or mutation status). Among MZL-like MBL, neither MYD88 mutations nor NOTCH2 mutations correlated with specific clinico-pathologic features (i.e. presence of an IgM type monoclonal component, intrasinusoidal bone marrow infiltration, plasma cell differentiation). Conclusions These data suggest that: i) SMZL, NMZL and MZL-like MBL share a similar genotype and are all promoted by the same molecular deregulation of MZ differentiation genes; and ii) vHCL stands as a genetically different entity among indolent B-cell lymphoproliferations. These data might help to refine the differential diagnosis of indolent B-cell lymphoproliferations mimicking SMZL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2065-2065 ◽  
Author(s):  
Roxana S Dronca ◽  
Curtis A. Hanson ◽  
Dragan Jevremovic ◽  
C. Scott Collins ◽  
Kari Rabe ◽  
...  

Abstract Background: The biology, pathology and clinical course of CD5+ chronic B cell lymphoproliferative disorders (CD5+ B-CLPD) excluding chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) and mantle cell lymphoma (MCL) are poorly defined. These patients could either have a leukemic variant of a known B cell malignancy or a novel disease entity. Objective: To define the clinical features and pathology of CD5+ B-CLPD, compare these features to CLL, and test the hypothesis that at least some of these patients have a unique B cell malignancy. Methods: The study was conducted with Institutional Review Board permission. We studied 231 patients evaluated in the Division of Hematology at Mayo Clinic Rochester between 1996 and 2008 who had CD5+ monoclonal B cell population in the peripheral blood and/or bone marrow, and in whom CLL and MCL was not diagnosed after flow cytometry, histology and interphase fluorescence in situ hybridization (FISH) examinations. Data were abstracted from patient records and from the Mayo Clinic CLL database. Statistical analysis: To compare differences in characteristics between CD5+ and CLL patients, χ2 statistics were used for qualitative variables (gender, treatment, vital status) and t-tests were used for quantitative variables (age). We performed survival and time to treatment analyses with results displayed using Kaplan-Meier curves and p-values calculated using a log-rank test. Results: We analyzed data on 231 CD5+ B-CLPD patients diagnosed between 7/1/1976 and 5/2/2008 and 1572 CLL patients diagnosed in the same time period. Median follow-up from diagnosis was 2.5 years (range 0 to 25.1 years) for the CD5+ patients and 5.2 years (range 0 to 29.9 years) for CLL patients. CD5+ B-CLPD patients had a median age at diagnosis of 68 years (range 30–94 years) with male predominance (61.5%). One hundred and nine of 231 (52.4%) patients received treatment for their CD5+ B-CLPD and 162 (70.1%) patients were alive at the time of last follow-up. As a group, CD5+ B-CLPD patients had a similar male predominance to CLL but were older at diagnosis. CD5+ B-CLPD patients required their first treatment significantly sooner than CLL patients (median 2.0 years vs. 6.8 years, (p&lt; 0.001) and a higher percentage of CD5+ B-CLPD patients required treatment (52.4% vs. 37.5%, p&lt;0.0001). In addition, CD5+ B-CLPD patients had a shorter survival from diagnosis than CLL patients (median 8.4 years vs. 12.5 years, p&lt;0.001). In 60 patients the CD5+ B-CLPD disease was the leukemic phase of a known lymphoma (lymphoplasmacytic lymphoma, n=34; nodal marginal zone lymphoma, n=6; splenic marginal zone lymphoma, n=16; MALT lymphoma, n=4), 46 patients had incomplete data, and 125 patients did not have pathological and flow cytometry features of a known lymphoid malignancy. Next we compared clinical outcome among the 125 patients with unclassifiable CD5+ B-CLPD to the CLL patients. The unclassifiable CD5+B-CLPD patients were older at diagnosis (median 69 vs. 65 years, p=0.0003) but there were no significant differences in time to treatment (median 9.0 years vs. 6.8 years, p=0.93) or the proportion of patients receiving treatment (30% vs. 37.5%, p=0.11). The survival from diagnosis was shorter for unclassifiable CD5+ B-CLPD patients (median 6.3 vs. 12.5 years, p&lt;0.001). Conclusions: In this large series of CD5+ B-CLPD patients we found that a large subset did not meet diagnostic criteria for known B-cell malignancies and could have a novel disease. This will need to be investigated further. We reviewed the pathology of all available archived tissue and intend to examine additional clinical and prognostic information including molecular prognostic markers. Our data provide a clinical rationale for the careful differentiation between patients with CLL and CD5+ B-CLPD.


Sign in / Sign up

Export Citation Format

Share Document