B Cells with BCL2/IGH Translocation Compose a Distinctive Cell Population That May Serve as a Reservoir of Lymphoma of Germinal Center B-Cell Type.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2050-2050
Author(s):  
Tomomi Sakai ◽  
Momoko Nishikori ◽  
Masaharu Tashima ◽  
Ryo Yamamoto ◽  
Toshio Kitawaki ◽  
...  

Abstract BCL2/IGH translocation is a hallmark of follicular lymphoma and diffuse large B-cell lymphoma of germinal center B-cell type. Although being a strong determinant of these histological subtypes, this translocation is considered to be insufficient by itself and further gene alterations are necessary for cellular transformation. In Eμ-BCL2 transgenic (Tg) mice, B-lineage cells are increased by several-fold compared to wild-type (WT) mice, but only 5–15 % of them develop disease in the first year of life. To clarify how the BCL2 translocation contributes to the development of specific lymphoma subtypes, we created two types of chimeric mouse models to characterize the biological features of BCL2-overexpressing B cells in normal individuals. First, we introduced CD19 promoter-driven BCL2 and its mutant genes to a minor population of murine bone marrow cells by using a lentiviral vector system and transplanted into irradiated mice. BCL2-overexpressing B cells showed increased follicular and reduced marginal zone populations. The same phenotypic shift was observed in B cells introducing BCL2-Y28F mutant that retained anti-apoptotic function, but a defective mutant BCL2-G142A and a mock vector did not affect B-cell phenotype. Additionally, BCL2-introduced B cells showed decreased cell size compared to those introduced BCL2-G142A and mock vectors. To assess the functional alteration of BCL2-overexpressing B cells, TNP-Ficoll binding experiment was performed. The result showed diminished T-cell independent response in parallel with decreased marginal zone B cells. The low transformation frequency of B cells in Eμ-BCL2 Tg mice has been partly explained by their propensity to reside in the G0 phase of the cell cycle (reviewed in Oncogene, 18:5268,1999). We hypothesized that the microenvironment of B cells in Eμ-BCL2 Tg mice might be altered by abnormal B cells themselves. To evaluate the influence of the different microenvironments on BCL2-overexpressing B cells, we next made Eμ-BCL2/CAG-GFP double Tg mice and transferred their bone marrow mononuclear cells into WT or Eμ-BCL2 Tg mice. Blastic cell population of BCL2+GFP+ B cells was larger in those transferred to WT mice compared to those transferred to Eμ-BCL2 Tg mice, regardless of the same phenotypic preference toward follicular B cells. BrdU uptake experiments demonstrated continuous cell cycle progression of the BCL2+GFP+ B cells in WT mice but repressed cell cycle of those in Eμ-BCL2 Tg mice. In immunohistochemical analysis, splenic follicles were disorganized with reduced follicular dendritic cells and inadequate T cell accumulation in Eμ-BCL2 Tg mice. Functional impairment of splenic follicles in Eμ-BCL2 Tg mice might be caused by decreased marginal zone B cell subset, as the antigen capture and delivery by marginal zone B cells was reported to play an important role in the development of follicular dendritic cells. To understand the fate of BCL2-overexpressing B cells after stimulation, we finally assessed their terminal differentiation capacity in vitro. Plasma cell differentiation was suppressed in B cells derived from Eμ-BCL2 Tg mice under either LPS or anti-IgM antibody stimulation. BCL2 is reported to impede the activity of transcription factor NF-AT (Proc Natl Acad Sci93:9545,1996; Nature386:728,1997), and we found that calcineurin inhibitor FK506 suppressed plasma cell differentiation of WT B cells. Gene regulation patterns of the Eμ-BCL2+ B cells were similar to B cells stimulated in the presence of FK506 as well, suggesting that repressed terminal differentiation in Eμ-BCL2+ B cells was partly caused by the suppressed activity of NF-AT. In summary, BCL2-deregulated B cells preferentially differentiate into follicular B cells, and as a result of decreased terminal differentiation in addition to their anti-apoptotic property, they may be obliged to survive and recirculate as memory B cells, and accumulate genetic abnormalities while they repeatedly pass through the germinal center. As the germinal center is the particular site where they can counterbalance the cell cycle-retarding effect of BCL2, it may be a specific place for generating lymphoma triggered by BCL2/IGH translocation. Our results emphasize the importance of the microenvironment of pre-malignant cells during transformation process, and suggest that a simple transgenic mouse model may not be always appropriate for the study of oncogenesis.

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2391-2398 ◽  
Author(s):  
Elena Vigorito ◽  
Laure Gambardella ◽  
Francesco Colucci ◽  
Simon McAdam ◽  
Martin Turner

AbstractMice lacking all 3 Vav proteins fail to produce significant numbers of recirculating follicular or marginal zone B cells. Those B cells that do mature have shortened lifespans. The constitutive nuclear factor-kappaB (NF-κB) activity of resting naive B cells required Vav function and expression of cellular reticuloendotheliosis (c-Rel). Rel-A was reduced in Vav-deficient B cells. Furthermore, expression of the NF-κB-regulated antiapoptotic genes A1 and Bcl-2 was reduced in mature Vav-deficient B cells. Overexpression of Bcl-2 restored the number of mature follicular B cells in the spleens of Vav-deficient mice. When activated by B-cell receptor (BCR) cross-linking, Vav-deficient B cells failed to activate NF-κB. Vav proteins thus regulate an NF-κB-dependent survival signal in naive B cells and are required for NF-κB function after BCR cross-linking.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 162-162 ◽  
Author(s):  
Alexandra Traverse-Glehen ◽  
Aurelie Verney ◽  
Lucille Baseggio ◽  
Pascale Felman ◽  
Evelyne Callet-Bauchu ◽  
...  

Abstract Background and Objectives Splenic and nodal marginal zone B cell lymphoma (SMZL and NMZL) have been recently identified as distinct clinicopathological entities in the WHO classification. These lymphomas entities may have a common origin in the marginal B-cell compartment of the lymphoid organs. However the precise cell of origin of marginal zone B cells, its status in the B cell differentiation pathway and the mechanisms involved in lymphomagenesis remain unclear. The most widely held view is that marginal zone B cells are mostly memory B cells. But the origin of these cells, especially the transit through germinal center pathway, remains contradictory. Somatically mutated variable-region of immunoglobulin genes and bcl-6 gene represent at this time faithful markers for exposure to the germinal center. In addition, aberrant somatic hypermutations have been suggested to contribute to the development of B-cell lymphomas, occurring in the 5′ sequence of several proto-oncogenes. Interestingly those mutation do not occur in normal germinal center B cells. Design and Methods: IgVH, BCL-6, PIM1, Rho/TTF and PAX 5 genes, highly mutated in DLBCL and other indolent lymphoma such as B-CLL, were analysed for the presence of somatic mutations from 50 marginal zone lymphoma tissue and blood samples (21 NMZL and 29 SMZL including 10 cases with numerous villous lymphoma cells in peripheral blood). According to the morphological and immunophenotypical analysis, the fraction of malignant cells in the specimen was 70% or more in all cases. Mutational analysis was restricted to the regions previously shown to contain more than 95% of mutations in DLBCL. PCR products were directly sequenced on both sides and perfomed in duplicate in two independent reactions. Results: Out of 18 NMZL cases analysed for IgVH mutational status (3 cases not analysed for IgVH) 15 cases were mutated and 21 out of 28 in SMZL cases. Mutation of BCL-6 was detected in only 1 NMZL patients (1/21) and 1 SMZL patients (1/29). For RhoH/TTF, PIM1, PAX5 the mutation average was also low with only 1 case mutated per group and per gene, with a different case mutated in each for each gene. Conclusion In summary, we demonstrate the low frequency of aberrant somatic mutations in SMZL and NMZL, suggesting that this process is probably not a major contributor to lymphomageneis. However the frequent absence of mutation in BCL6 suggest a particular differentiation pathway, as suggested before in normal marginal zone B cells, possibly without transit through the germinal center. Interestingly the relatively high frequency of VH mutated cases compared with the frequent absence of mutation of BCL6, considered as a specific germinal center tag, could suggest somatic hypermutation outside the germinal center. In addition the absence of hypermutation could be linked with the absence of recurrent translocation in SMZL and NMZL, the translocation process haveing been associated with somatic hypermutation dysfunction.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2397-2397
Author(s):  
Gabriel Brisou ◽  
Laurent Jallades ◽  
Alexandra Traverse-Glehen ◽  
Francoise Berger ◽  
Aurélie Verney ◽  
...  

Abstract Abstract 2397 B cells can undergo at least two differentiation pathways, dependent of T cells or not, starting from follicular or marginal zone B cells respectively. The T-independent response, less understood than the germinal center reaction, is triggered by specific antigens and arises from marginal zone B cells. During this development, some B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR), triggered by the same DNA editing enzyme called Activation Induced Cytidine Deaminase (AID). The splenic marginal zone lymphoma (SMZL) is a rare lymphoproliferative disorder characterized by a clonal expansion of B cells in the marginal zone of the spleen. These B-cells underwent SHM in roughly 60% of the cases but nearly none underwent CSR. These observations suggest that tumor clones originate from a particular activated B cell subset not transiting through the germinal center. In order to confirm this hypothesis, we focused our work on the status and impact of AID in this disease and worked on purified B cells extracted from spleen of well-characterized SMZL cases. We determined AID status by quantitative RT-PCR analysis on 27 SMZL samples and compared it with 5 controls. In the SMZL group the relative level of expression of AID is heterogeneous but two subgroups could be distinguished: one considered as expressing AID (14 cases out of the 27 analyzed), the remaining considered as not expressing AID. When we compared AID expression rate with occurrence of SHM and CSR, no clear correlation between AID expression and presence of SHM or CSR could be observed suggesting that AID, when expressed, is dysfunctional. To address this hypothesis, we first analyzed AID protein by immunohistochemistry and a good correlation between IHC signal and AID mRNA expression level has been observed. As AID gene was not mutated, we next focused our work on AID mRNA splicing variants as these variants exhibit different functions according to the domain of the protein they contain in a murine model. We found that SMZL B cells express various splicing variants of AID mRNA, some of those variants corresponding to the full length isoform (n = 6/17), and other variants corresponding to AID-ΔE4a (n = 2/17) or AID-ΔE4 (n = 7/17) isoforms known to be expressed in normal germinal center B cells as well as in Chronic Lymphocytic and Acute Lymphoblastic Leukemia. These findings indicate that although expressed at the mRNA and protein levels, AID may not be fully functional in SMZL cases. Finally we addressed the potential clinical significance of AID expression. We identified for that purpose a group of “progressive SMZL” patients that had received immuno-chemotherapy after splenectomy because of a significant risk of progression or transformation into aggressive large B cell lymphoma (n = 8/27) pre-empting outcome differences. We found a higher proportion of AID expressing patients in the defined “progressive SMZL” group (n = 7/8) as compared to the proportion found in the “indolent SMZL” group (n = 5/14, p = 0,03). Altogether, this data suggest that the B cell clone leading to SMZL originate from the marginal zone and support the hypothesis of a lymphoproliferative disorder affecting the T-independent response. AID expression in SMZL may reflect an advanced stage of the disease and could be correlated with the evolution of the lymphoma into a more clinically or pathologically aggressive form. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 37 (8) ◽  
pp. 1646-1657 ◽  
Author(s):  
YU ZHANG ◽  
SUBHRAJIT SAHA ◽  
GABRIEL ROSENFELD ◽  
JUANA GONZALEZ ◽  
KIRIL P. PEPELJUGOSKI ◽  
...  

Objective.Estrogen has been found to exacerbate disease activity in murine lupus and to induce a lupus-like syndrome in nonspontaneously autoimmune mice. This has led to the consideration that estrogen may be a risk factor for the development of systemic lupus erythematosus (SLE), and selective estrogen receptor modulators (SERM) may serve to ameliorate lupus activity. We evaluated the effects and mechanism of action of the SERM raloxifene in murine lupus.Methods.Effects of raloxifene on the development of lupus in NZB/W F1 mice were evaluated in the presence and absence of estrogen by assessing the serum DNA reactivity, glomerular IgG deposition and kidney damage, B cell maturation and selection, and activation status of marginal zone and follicular B cells.Results.Compared to estradiol-treated mice, mice treated with estradiol and raloxifene had significantly lower serum anti-DNA antibody levels and less kidney damage. These effects of raloxifene were due, at least in part, to antagonism of the influence of estrogen on DNA-reactive B cells. Raloxifene was found to prevent estrogen-mediated suppression of autoreactive B cell elimination at the T1/T2 selection checkpoint, to reduce estrogen-induced CD40 overexpression on follicular B cells, making them less responsive to T cell costimulation, and to ameliorate estrogen-mediated CD22 downregulation on marginal zone B cells, thereby decreasing their responsiveness to B cell antigen receptor-mediated stimuli.Conclusion.Raloxifene suppressed estrogen-mediated effects on the survival, maturation, and activation of autoreactive B cells in NZB/W F1 mice.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1737-1737
Author(s):  
Anat Biran ◽  
Helene Kretzmer ◽  
Shanye Yin ◽  
Leah Billington ◽  
Fara Faye Regis ◽  
...  

Large-scale DNA methylation analysis of chronic lymphocytic leukemia (CLL) has identified a pervasive genome-wide level of discordance in local methylation state in leukemic cells compared to normal B cells. This is associated with variation in gene expression, increased clonal evolution and poorer clinical outcomes. We hypothesized that locally disordered methylation could lead to dysregulation of gene expression and hence contribute to cancer development and progression. To test this, we have engineered mouse lines with B-cell restricted homozygous or heterozygous knock-out of Dnmt3a by crossing Dnmt3a-floxed mice with CD19-Cre mice. Dnmt3a is a DNA methyltransferase, catalyzing the addition of a methyl group to CpG sequences in the DNA and thereby regulating gene expression. Although DNMT3A mutations are only rarely identified in CLL, RNA sequencing and protein expression analysis reveal dysregulation of DNMT3A. We confirmed partial or complete reduction in Dnmt3a protein levels in B cells from CD19-Cre;Dnmt3a heterozygous (Dnmt3a-het) and CD19-Cre;Dnmt3a homozygous mice (Dnmt3a-hom), respectively. These mice therefore provide a unique opportunity to study B cell restricted changes in locally discordant methylation over time. We first assessed the impact of Dnmt3a deletion on normal B cell development, prior to CLL development, by characterizing splenic B cell of CD19-Cre (control) or Dnmt3a-hom mice. Flow cytometry data using B220, CD21 and CD23 markers to identify B220+CD23+CD21- follicular B cells and B220+CD23+CD21high marginal zone B cells revealed elevated levels of follicular B cells (83.1% vs 87.6%, p=0.008) and reduced levels of marginal zone B cells (9.6% vs 4.1%, p=0.001) in Dnmt3a-hom mice in comparison to control mice (n=3 mice per group). These results indicate that mice with Dnmt3a deletion present with massive changes in their B cells, even prior to overt CLL development. We next monitored both Dnmt3a-het and Dnmt3a-hom cohorts over time for CLL development. We observed that 100% Dnmt3a-hom mice developed CLL-like disease by 7 months (n=23), characterized by CD5+B220+;Igk+ expression and evident within the blood, bone marrow (BM), spleen and peritoneum, suggesting a fundamental role of altered DNMT3A expression in generation of CLL. In comparison, 75% of Dnmt3a-het mice developed CLL-like disease by 18 months (n=12), with similar expansion of CD5+C220+ expansion in the BM and spleen. By RNA-sequencing analysis of normal splenic B cells from CD19-Cre and Dnmt3a-hom mice (n=3 mice, 10 weeks old), we detected substantial changes in gene expression, including 113 upregulated genes and 39 downregulated (p<0.05, FC>2). To explore the development of locally disordered methylation following transformation, CLL cells from Dnmt3a-hom mice (n=3) were subjected to reduced representation bisulfite sequencing (RRBS), a high-throughput technique to analyze genome wide methylation patterns. We found that murine CLL-like cells display locally disordered methylation, which was detected in all genomic features covered by this assay, indicating that disordered methylation is broadly affecting the murine CLL cells' epigenome. Additionally, we identified a set of differentially methylated regions (DMRs) between B cells from CD19-Cre vs CLL cells from Dnmt3a-hom (n = 2,839 DMRs), with a minimum difference of 0.2 and a minimum of 10 CpGs per DMR. Interestingly, gene ontology analysis demonstrated strong association with genes hypermethylated in TCL1 mouse model, linking this model with alternative murine models for CLL. In conclusion, we have studied B cell specific deletion of Dntm3a and showed the development of CLL in 100% of the case in Dnmt3a-hom mice. Our data suggest a fundamental role for Dnmt3a in CLL development through increased locally disordered methylation and changes in associated transcriptional signatures. This mouse model provides an exciting experimental model to undertake functional in vivo studies in order to elucidate the contribution of epigenetic changes on CLL development. Disclosures Neuberg: Pharmacyclics: Research Funding; Madrigal Pharmaceuticals: Equity Ownership; Celgene: Research Funding. Wu:Neon Therapeutics: Other: Member, Advisory Board; Pharmacyclics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 565-565
Author(s):  
Davide Bagnara ◽  
Margherita Squillario ◽  
David Kipling ◽  
Thierry Mora ◽  
Aleksandra Walczak ◽  
...  

Abstract In humans, whether B cells with the IgM+IgD+CD27+ phenotype represent an independent lineage involved in T-independent responses, similar to mouse marginal zone B cells, or whether they are part of the germinal center-derived memory B-cell pool generated during responses to T-dependent antigens, is still a debated issue. To address this question, we performed high-throughput Ig sequencing of B-cell subsets from paired blood and spleen samples and analyzed the clonal relationships between them. We isolated and analyzed 3 different B cell subsets based on CD27 and IgD staining from both blood and spleen: IgD+CD27+ (MZ) - amplified with Cmu primers IgD-CD27+ (switched and IgM-only) with Cmu, Cgamma and Calpha primers IgD-CD27- (CD27- memory or double-negative DN) with the same three primers We obtained 95729 unique sequences that clustered in 49199 different clones: 1125 clones were shared between blood and spleen of the same B-cell subset, and 1681 clones were shared between different subsets, allowing us to trace their relationships. We analyzed these clones that share sequences from different subsets/tissues for their mutation frequency distribution, CDR3-length, and VH/JH family usage, and compared these different characteristics with the bulk of sequences from their respective subset of origin. The analysis of clones shared between blood and spleen for switched IgG/IgA and for MZ subsets suggests different recirculation dynamics. For switched cells, the blood appears to be a mixture of splenic and other lymphoid tissues B cells. For MZ B cells in contrast, the blood appear to be only composed of a subgroup of the splenic repertoire, in agreement with the observation that marginal zone B cells recirculate and are mainly generated in the spleen. Clonal relationships between the IgM clones (originating from the MZ, IgM-only and double negative compartments) show that the clones involved display the characteristics of IgM-only B cells whatever their subset of origin, even in the case of the paired MZ/double-negative sequences that were not supposed to include IgM-only sequences. We therefore conclude that the clones shared between the various IgM subsets do not represent b between them, but rather correspond to a heterogeneous phenotype of the IgM-only population that concerns both IgD and CD27 expression, leading to a partial overlap with the MZ and double-negative gates. Clones shared between the MZ and the switched IgG and IgA compartment also show, for their IgM part, the mutation and repertoire characteristics of IgM-only cells and not of MZ B cells, reinforcing the conclusion that IgM-only are true memory B cells, and constitute the only subset showing clonal relationships with switched memory B cells. In summary, we report that MZ B cells have different recirculation characteristics and do not show real clonal relationships with IgM-only and switched memory B cells, in agreement with the notion that they represent a distinct differentiation pathway. In contrast, the only precursor-product relationship between IgM memory and switched B cells appear to concern a B cell subset that has been described as "IgM-only", but appears to have a more heterogeneous expression of IgD than previously reported and therefore contribute to 3-15% of the MZ compartment. Searching for markers that would permit to discriminate between marginal zone and germinal center-derived IgM memory B cells is obviously required to further delineate their respective function. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 40 (11) ◽  
pp. 2598-2604
Author(s):  
Meritxell Nus ◽  
Gemma Basatemur ◽  
Maria Galan ◽  
Laia Cros-Brunsó ◽  
Tian X. Zhao ◽  
...  

Objective: NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis. Approach and Results: We found that feeding Ldlr −/− mice a Western diet substantially increased Nr4a1 expression in marginal zone B (MZB) cells compared with follicular B cells. We then generated Ldlr −/− mice with complete B- or specific MZB-cell deletion of Nr4a1 . Complete B-cell deletion of Nr4a1 led to increased atherosclerosis, which was accompanied by increased T follicular helper cell–germinal center axis response, as well as increased serum total cholesterol and triglycerides levels. Interestingly, specific MZB-cell deletion of Nr4a1 increased atherosclerosis in association with an increased T follicular helper–germinal center response but without any impact on serum cholesterol or triglyceride levels. Nr4a1 −/− MZB cells showed decreased PDL1 (programmed death ligand-1) expression, which may have contributed to the enhanced T follicular helper response. Conclusions: Our findings reveal a previously unsuspected role for NR4A1 in the atheroprotective role of MZB cells.


2016 ◽  
Vol 36 (20) ◽  
pp. 2543-2552 ◽  
Author(s):  
Shuwen Chen ◽  
Masaki Miyazaki ◽  
Vivek Chandra ◽  
Kathleen M. Fisch ◽  
Aaron N. Chang ◽  
...  

Previous studies have demonstrated that E proteins induce activation-induced deaminase (AID) expression in activated B cells. Here, we examined the role of Id3 in germinal center (GC) cells. We found that Id3 expression is high in follicular B lineage cells but declines in GC cells. Immunized mice with Id3 expression depleted displayed a block in germinal center B cell maturation, showed reduced numbers of marginal zone B cells and class-switched cells, and were associated with decreased antibody titers and lower numbers of plasma cells.In vitro, Id3-depleted B cells displayed a defect in class switch recombination. Whereas AID levels were not altered in Id3-depleted activated B cells, the expression of a subset of genes encoding signaling components of antigen receptor-, cytokine receptor-, and chemokine receptor-mediated signaling was significantly impaired. We propose that during the GC reaction, Id3 levels decline to activate the expression of genes encoding signaling components that mediate B cell receptor- and or cytokine receptor-mediated signaling to promote the differentiation of GC B cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Barry M. Bradford ◽  
Neil A. Mabbott

AbstractPrion diseases are a unique, infectious, neurodegenerative disorders that can affect animals and humans. Data from mouse transmissions show that efficient infection of the host after intravenous (IV) prion exposure is dependent upon the early accumulation and amplification of the prions on stromal follicular dendritic cells (FDC) in the B cell follicles. How infectious prions are initially conveyed from the blood-stream to the FDC in the spleen is uncertain. Addressing this issue is important as susceptibility to peripheral prion infections can be reduced by treatments that prevent the early accumulation of prions upon FDC. The marginal zone (MZ) in the spleen contains specialized subsets of B cells and macrophages that are positioned to continuously monitor the blood-stream and remove pathogens, toxins and apoptotic cells. The continual shuttling of MZ B cells between the MZ and the B-cell follicle enables them to efficiently capture and deliver blood-borne antigens and antigen-containing immune complexes to splenic FDC. We tested the hypothesis that MZ B cells also play a role in the initial shuttling of prions from the blood-stream to FDC. MZ B cells were temporarily depleted from the MZ by antibody-mediated blocking of integrin function. We show that depletion of MZ B cells around the time of IV prion exposure did not affect the early accumulation of blood-borne prions upon splenic FDC or reduce susceptibility to IV prion infection. In conclusion, our data suggest that the initial delivery of blood-borne prions to FDC in the spleen occurs independently of MZ B cells.


Sign in / Sign up

Export Citation Format

Share Document