AMPLITUDE SHIFT KEYING MODULATION, DEMODULATION, AND PERFORMANCE

2021 ◽  
pp. 1-1
Author(s):  
Alexandros E. Tzikas ◽  
Panagiotis D. Diamantoulakis ◽  
George K. Karagiannidis

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gang Zhang ◽  
Yi man Hao ◽  
Tian qi Zhang

The major drawback of the differential chaos shift keying (DCSK) system is that equal time and energy are spent on the reference and data signal. This paper presents the design and performance analysis of a short reference multifold rate DCSK (SRMR-DCSK) system to overcome the major drawback. The SRMR-DCSK system is proposed to enhance the data rate of the short reference differential chaos shift keying (SR-DCSK) system. By recycling each reference signal in SR-DCSK, the data slot carries N bits of data and by P times. As a result, compared with SR-DCSK, the proposed system has a higher data transmission rate and evaluates the energy efficiency with respect to the conventional DCSK system. To further improve the bit-error-rate (BER) performance over Rayleigh fading channels, the multiple-input single-output SRMR-DCSK (MISO-SRMR-DCSK) is also studied. The BER expression of the proposed system is derived based on Gaussian approximation (GA), and simulations in Rayleigh fading channels are performed. Simulation results show a perfect match with the analytical expression.


2017 ◽  
Vol 66 (11) ◽  
pp. 10139-10155 ◽  
Author(s):  
Jiliang Zhang ◽  
Yang Wang ◽  
Jie Zhang ◽  
Liqin Ding

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chiemeka Loveth Maxwell ◽  
Dongsheng Yu ◽  
Yang Leng

Purpose The purpose of this paper is to design and construct an amplitude shift keying (ASK) modulator, which, using the digital binary modulating signal, controls a floating memristor emulator (MR) internally without the need for additional control circuits to achieve the ASK modulated wave. Design/methodology/approach A binary digital unipolar signal to be modulated is converted by a pre-processor circuit into a suitable bipolar modulating direct current (DC) signal for the control of the MR state, using current conveyors the carrier signal’s amplitude is varied with the change in the memristance of the floating MR. A high pass filter is then used to remove the DC control signal (modulating signal) leaving only the modulated carrier signal. Findings The results from the experiment and simulation are in agreement showed that the MR can be switched between two states and that a change in the carrier signals amplitude can be achieved by using an MR. Thus, showing that the circuit behavior is in line with the proposed theory and validating the said theory. Originality/value In this paper, the binary signal to be modulated is modified into a suitable control signal for the MR, thus the MR relies on the internal operation of the modulator circuit for the control of its memristance. An ASK modulation can then be achieved using a floating memristor without the need for additional circuits or signals to control its memristance.


Sign in / Sign up

Export Citation Format

Share Document