Hoop Tensile Strength of CMC Tubes for LWRs Applcations Using Internal Pressurization Via Elastomeric Insert: New ASTM Test Method

Author(s):  
Michael G. Jenkins ◽  
Jonathan A. Salem ◽  
Janine E. Gallego
Keyword(s):  
1989 ◽  
Vol 62 (4) ◽  
pp. 643-655
Author(s):  
Richard W. Tomlinson ◽  
Daniel F. Sheridan

Abstract The use of pulsed NMR analysis under proper operating conditions has proven to be useful for controlling various polymer compositions in the manufacture of EPDM. It can be used in determining the amount of oil incorporated into oil-extended EPDMs. At higher oil contents, the differences in EPDM properties will affect this test method, which will require a separate calibration curve for each type of polymer. It can be used to measure the propylene content of EPDM. Comparison data have shown that this technique is more accurate in predicting crystallinity or propylene content than the standard IR method within the propylene range of 22 to 41%. Pulsed NMR can also be used to predict uncured EPDM compound tensile strength and EPDM/PP compression-molded tensile strength. Since these properties are affected by the crystallinity of EPDM, of which percent ethylene is the major contributor, then tensile strength can be determined indirectly. Based on the tensile and SER correlation, it seems obvious that this technique is measuring the spin-spin relaxation times of the crystalline phase, whereas the ir method is only measuring propylene content.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ke Man ◽  
Xiaoli Liu

From the standard test method suggested by ISRM and GB/T50266-2013, the uniaxial static tensile strength, dynamic tensile strength, and dynamic fracture toughness of the same basalt at different depths have been measured, respectively. It is observed that there may be an empirical relation between dynamic fracture toughness and dynamic tensile strength. The testing data show that both the dynamic fracture toughness and dynamic tensile strength increase with the loading rate and the dynamic tensile strength increases a little bit more quickly than the dynamic fracture toughness. With an increasing depth, the dynamic tensile strength has much more influence on the dynamic fracture toughness, as which it is much liable to bring out the unexpected catastrophes in the engineering projects, especially during the excavation at deep mining. From the rock failure mechanisms, it is pointed out that the essential reason of the rock failure is the microcrack unstable propagation. The crack processes growth, propagation, and coalescence are induced by tensile stress, not shear stress or compressive stress. The paper provides estimation of the dynamic fracture toughness from the dynamic tensile strength value, which can be measured more easily.


Author(s):  
Р. Ш. Іскандаров ◽  
Н. В. Сова ◽  
Б. М. Савченко ◽  
І. І. П'ятничук ◽  
В. А. Татаренко

Study of the FFF additive manufacturing process of composite material based on L – polylactide (PLLA) with ultra-short carbon fibers. Tensile strength and elongation at break for all test specimens were determined according to ISO 527. Tensile modulus - ASTM D638-10, specimen density - PN-EN ISO 1183, microscopic examination - according to ASTM E2015 - 04 (2014). Charpy Shock Tests ISO 179 and ASTM D256. Bending test method ISO 178 and ASTM D 790. The rational modes of FFF additive manufacturing (AM) of carbon fiber composite based on PLLA was established. Properties of carbon fiber PLLA and unfilled PLLA was determinated for AM formed samples and injection molded samples. Carbon fiber composites have significantly higher flexural and tensile module us values compared to the original L-polylactide, which is due to the effect of polymer matrix reinforcement by the fibrous component. However, finished products obtained by AM PLLA carbon composite have a lower impact strength and tensile strength, which is likely to be due to the fact that the carbon fibers are short (50-60 mkm) and have a cavitations effect during injection molding and AM. Density of carbon fiber filled PLLLA was lower the theoretically calculated value for filament material as well for injection molded and AM formed samples. Density reduction probably the main cause of impact properties deterioration due to cavity forming around carbon fibers. Density and tensile properties of AM formed samples can be changed by AM slicing parameter – extrusion multiplier. Cavitation effect for carbon fiber composites observed for PLLA composite in form AM filament, injection molded parts and AM formed samples. Cavity forming was confirmed by optical microscopy and density measurement. Possible reason for cavity forming is orientation deformation of the fiber in polymer matrix during the formation of the filament. The effect of cavitation also persists in the AM of products from carbon composites due to the passage of the orientation at the exit of the printer nozzle.  The possibility of regulating the density and physical and mechanical properties of carbon composite products obtained by the additive manufacturing method has been established. Selection of rational values of the extrusion multiplier and the direction of the layers in the additive molding allows you to create products with the desired complex of properties.


Author(s):  
Eren Komurlu ◽  
Serhat Demir

Use of drilled disc specimens was investigated with both numerical and experimental studies to determine direct tensile strengths of rock materials. A new loading apparatus with rods to insert into the drill holes of discs has been designed and manufactured to supply tension by using the compression test presses. In addition to the use of popular compressive presses for direct tension, elimination of the gluing in the standard direct tensile strength test method is a significant advantage to make possible both hard and soft rocks to be tested. The Brazilian test discs with the diameter of NX size and length to diameter ratio of 0.5 were used in tests. Different loading apparatus designs were analyzed and ideal angle of contact between rock and the loading rods was assessed to be 50° within various choices investigated in this study. The drilled discs were determined to fail due to the crack initiation under the condition of uniaxial tensile stress distribution at sidewalls of the hole. In addition to the drilled disc tension test, standard direct tensile strength tests were also carried out to take as reference and compare the results obtained from different methods. According to the results of both numerical and experimental studies, an equation was suggested to determine uniaxial tensile strengths of drilled disc specimens with 20 mm hole diameter and the contact angle of 50°.


Sign in / Sign up

Export Citation Format

Share Document