direct tensile strength
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
pp. 105678952110441
Author(s):  
Wenxuan Yu ◽  
Liu Jin ◽  
Xi Liu ◽  
Xiuli Du

A comprehensive finite element analysis at the mesoscopic level has been conducted into the complex topic of size effect coupling dynamic strain-rates. Taking the lightweight aggregate concrete (LWAC) dumbbell-shaped samples as the object of numerical investigation, the influence of strain-rate (with the range of 10−5/s ∼ 100/s) on direct-tensile failure of LWAC (including different lightweight aggregate volume fractions [Formula: see text] = 40%, 30% and 20%) was discussed. Subsequently, the structure size of LWAC samples was further expanded (width W = 100, 200 and 300 mm) and the dynamic size effect on direct-tensile strength was investigated. Numerical results show that both the direct-tensile strength and its corresponding size effect of LWAC exhibit a strain-rate dependent behaviour. The increasing strain-rate can gradually weaken the size effect of LWAC and direct-tensile strength would be independent to the structure size as the strain-rate reaches the critical strain-rate. The increasing lightweight aggregate volume fraction can reduce direct-tensile strength. Furthermore, a dynamic size effect model establishing the direct link between the strain-rate effect and size effect was proposed, which can quantitatively predict the dynamic direct-tensile strength of LWAC.


2021 ◽  
Vol 45 (4) ◽  
pp. 351-359
Author(s):  
Noor Alhuda Sami Aljabbri ◽  
Mohammed Noori Hussein ◽  
Ali Abdulmohsin Khamees

Fire or high temperature is a serious issue to ultra-high-strength concrete (UHSC). Strength reduction of UHPCs may amount to as high as 80 percent after exposure to 800℃. A sum of four UHSC mixes was synthesized and evaluated in this study after getting exposed to extreme temperatures that reach 1000°C. Steel and polypropylene (PP) fibers were used in this experiment. A total of four mixes were made of UHSC without fibres as a control mix (UHSC-0), UHSC with 2% steel fibres (UHSC-S), UHSC with 2% PP fibres (UHSC-P) and UHSC with 1% steel fibres + 1% PP fibres (UHSC-SP). Workability, direct tensile strength, compressive strength, and splitting tensile strength were examined. Particularly, emphasis was devoted to explosive spalling since UHPCs are typically of compact structure and hence more prone to explosive spalling than other concretes. It was determined that the mixture UHSC-SP had high fire resistance. Following exposure to 1000℃, this mixture preserved a residual compressive strength of 36 MPa, splitting tensile strength of 1.62 MPa and direct tensile strength of 0.8 MPa. On the other hand, UHSC-P also had good fire resistance while UHSC-0 and UHSC-S experienced explosive spalling after heating above 200ᴼC. The incorporation of steel fibers in UHSC-S and UHSC-SP mixtures reveals higher tensile and compressive strength findings at different elevated temperatures as compared to UHSC-0 and UHSC-P. In addition, the result of direct tensile strength appears to be lower than splitting tensile strength at different raised temperatures.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3765
Author(s):  
Rubendran Loganathan ◽  
Bashar S. Mohammed

To avoid explosive spalling during elevated temperature, crumb rubber (CR) is being added to the manufacturing of engineered cementitious composites (ECC). However, the addition of CR particles adversely affects the mechanical properties of ECC. Therefore, to overcome this issue, nano-silica (NS) is added into rubberized ECC mixture as cementitious material additives. Response surface methodology (RSM) has been utilized to optimize the mixtures of the rubberized ECC with variables: CR (0, 2.5, and 5 vol.%), polyvinyl alcohol (PVA) fiber (0, 1, and 2 vol.%), NS (0, 1, and 2 vol.%), and fly ash (0, 25, and 50 vol.%). The experimentally measured responses are flexural strength, direct tensile strength, elastic modulus, Poisson’s ratio, creep, and drying shrinkage. Mathematical models to predict the targeted responses have been developed using RSM. As a result, a high correlation between the factors and responses has been exhibited by the developed models and the accuracy of fit, where less than 9.38% of the variation was found between the predicted and validated results. The experimental results revealed that the rubberized ECC with the incorporation of nano-silica exhibited a higher compressive strength, direct tensile strength, flexural strength, elastic modulus, Poisson’s ratio, and lower drying shrinkage.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Tamer Efe ◽  
Servet Demirdag ◽  
Kenan Tufekci ◽  
Nazmi Sengun ◽  
Rasit Altindag

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2178
Author(s):  
Cut Rahmawati ◽  
Sri Aprilia ◽  
Taufiq Saidi ◽  
Teuku Budi Aulia ◽  
Agung Efriyo Hadi

Nanosilica produced from physically-processed white rice husk ash agricultural waste can be incorporated into geopolymer cement-based materials to improve the mechanical and micro performance. This study aimed to investigate the effect of natural nanosilica on the mechanical properties and microstructure of geopolymer cement. It examined the mechanical behavior of geopolymer paste reinforced with 2, 3, and 4 wt% nanosilica. The tests of compressive strength, direct tensile strength, three bending tests, Scanning Electron Microscope-Energy Dispersive X-ray (SEM/EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR) were undertaken to evaluate the effect of nanosilica addition to the geopolymer paste. The addition of 2 wt% nanosilica in the geopolymer paste increased the compressive strength by 22%, flexural strength by 82%, and fracture toughness by 82% but decreased the direct tensile strength by 31%. The microstructure analysis using SEM, XRD, and FTIR showed the formation of calcium alumina-silicate hydrate (C–A–S–H) gel. The SEM images also revealed a compact and cohesive geopolymer matrix, indicating that the mechanical properties of geopolymers with 2 wt% nanosilica were improved. Thus, it is feasible for nanosilica to be used as a binder.


2020 ◽  
Vol 11 (2) ◽  
pp. 78-87
Author(s):  
Purwanto Purwanto ◽  
◽  
Rudi Yuniarto Adi ◽  
Arum Yumastuti ◽  
Farah Diena Amelia

SCGC Concrete (Self Compacting Geopolymer Concrete) has the advantage of being easier and more effective in casting, so it can be applied to strengthening building structures, including the Concrete Jacketing method and voute / haunch beam. This reinforcement method is a form of composite concrete application with different concrete ages, which consists of existing structures with conventional concrete material and jacket or haunch section with SCGC concrete material. This study aims to determine the characteristics in the form of direct tensile strength, flexural tensile strength, and pull off tests (bond test) to test the strength of adhesion between concrete joints. Making specimens consists of 4 x 4 x 16 (cm) flexural tensile test beams, and 15 x 15 x 60 (cm) pull off specimens, and direct tensile specimens in the form of numbers 8. The principle of making test specimens is done by casting twice The first casting is done on the first half of the mold, then wait until the concrete age is 28 days. Then a second casting is carried out in the next half, until the concrete age is 28 days. So that the total age of concrete in making connection test specimens is 56 days. From the results of this study it was found SCGC concrete has a higher adhesion than conventional concrete so that SCGC concrete can be applied for structural reinforcement.


Sign in / Sign up

Export Citation Format

Share Document