Properties of Bayer Red Mud Based Flux and Its Application in the Steelmaking Process

Author(s):  
Yanling Zhang ◽  
Fengshan Li ◽  
Ruimin Wang
2016 ◽  
Vol 88 (2) ◽  
pp. 1600140 ◽  
Author(s):  
Yanling Zhang ◽  
Fengshan Li ◽  
Ruimin Wang ◽  
Dongdong Tian

JOM ◽  
2019 ◽  
Vol 71 (9) ◽  
pp. 2936-2943 ◽  
Author(s):  
Feng Gao ◽  
Jihao Zhang ◽  
Xinjie Deng ◽  
Kaituo Wang ◽  
Chunlin He ◽  
...  

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Yi Qian ◽  
Kangjia Jiang ◽  
Long Li

AbstractNowadays, reducing the hazards of bayer red mud (BRM) is an important research direction in the fields of environmental and safety. In this article, Mg/Al/Fe ternary layered double hydroxides (Mg/Al/Fe-LDHs) were synthesized successfully by a co-precipitation method based on introducing Mg2+ into the BRM suspension. The thermogravimetric analysis (TGA) results showed that the decomposition rate of LDHs is higher than that of BRM, which indicates that LDHs can absorb more heat than BRM during the decomposition process. Subsequently, BRM and LDHs were added into the ethylene vinyl acetate (EVA) to investigate its effects on reducing flammability of the composites. The cone calorimeter test (CCT) results demonstrated that 50 wt% LDH-B can make the peak value of HRR (PHRR) decrease from 1694.8 kW/m2 (EVA) to 199.2 kW/m2 (ELDH2). The smoke density test (SDT) results showed that the luminous flux of ELDH2 is nearly 95% at the end of test with a pilot flame, which is much higher than that of EVA and EBRM. The thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) results confirmed that LDHs can improve the thermal stability of composites and reduce the production of some toxic gases. Compared with BRM, the improved flame retardancy of Mg/Al/Fe-LDHs is ascribed to the introduction of Mg2+, which offering an enhanced catalytic carbonization capability, as well as the physical barrier effect of char residue layer catalyzed by the lamellar LDHs


Sign in / Sign up

Export Citation Format

Share Document