scholarly journals Introduction to Thermochemical Processing of Biomass into Fuels, Chemicals, and Power

Author(s):  
Xiaolei Zhang ◽  
Robert C. Brown
2004 ◽  
Vol 35 (5-6) ◽  
pp. 387-392
Author(s):  
V. A. Borodulya ◽  
L. M. Vinogradov ◽  
S. A. Zhdanok ◽  
A. V. Krauklis

2018 ◽  
Vol 69 (9) ◽  
pp. 2416-2419
Author(s):  
Mihai Branzei ◽  
Mihai Ovidiu Cojocaru ◽  
Leontin Nicolae Druga ◽  
Florica Tudose ◽  
Roxana Trusca

Experimental research aimed to find a solution for replacing components with high toxicity (or generating such components as a result of reactions occurring in the environment at processing temperatures) from the environments used for ferritic nitrocarburising process (FNCP) with non-hazardous components, but extremely active during the process. In the temperature range in which this type of processing is applied (lower than the eutectoid transformation temperature in the Fe-N phase diagram), the most commonly used media are liquid or gaseous; liquid ones contain toxic components (sodium or potassium cyanates/cyanides), and gaseous ones require complex equipments. Packing is extremely rarely used, but in this case pack-mix contain toxic components (15 � 20 wt.% sodium or potassium ferrocyanide). Urea also called carbamide (CO (NH2)2) is the active component in the pack-mixing proposed to be used for FNCP. Carbamide is used in low temperature cyanidation thermochemical heat treatment (liquid FNC), together with sodium or potassium carbonates, resulting in very toxic reaction products (sodium or potassium cyanates). Compared to cyanidation, in the version proposed in the paper, the carbamide does not react with carbonates because they are not found in the composition of the environment but decomposes in the presence or absence of oxygen (by a disproportionation reaction) with the formation of some gas molecules interesting for the process. It has been concluded that the use of carbamide together with two other components, activated charcoal (having a triple role - dispersing, storage, surface saturation) and respectively ammonium chloride as surface reaction activator, is an effective solution for achieving the desired goals by applying this type of thermochemical processing to a wide range of products made of quality steels up to alloy miscellaneous steels.


2021 ◽  
Vol 4 ◽  
pp. 15-21
Author(s):  
M.O. Gordienko

THE SELECTION OF TECHNOLOGICAL BASIS OF DEEP PROCESSING OF COAL © M.O. Gordienko (State Enterprise "Ukrainian State Research Coal Chemical Institute (UHIN)", 61023, Kharkov, Vesnina st., 7, Ukraine) The article is devoted to the analysis of the possibility of expanding the raw material base of thermal energy, as well as meeting the demand for motor fuels and chemical products through the thermochemical processing of coal, the reserves of which are large enough and available for extraction and transportation. Moreover, in contrast to technologies such as methanization and liquefaction, the most promising type of deep processing of coal seems to be its gasification. This process is carried out in sealed devices of high power according to the technologies that have a long history of improvement on an industrial scale by the world's leading companies. It was emphasized that Ukraine has significant reserves of low-calorie coal (constantly expanding due to waste of coal preparation), the thermochemical processing of which can significantly expand the domestic energy base. The basic principles of classification and technological foundations of existing industrial and industrial research installations for gasification of coal and similar materials are given. The basic diagrams and main parameters of the existing installations, which carry out the gasification process at temperatures below the melting point of the mineral (ash-forming) components of the raw material, are described - Sasol Lurgi and SES Gasification Technology (SGT). Based on the data on the world experience in the operation of thermochemical coal processing units, it is shown that low-temperature (carried out at a temperature below the melting point of the mineral ashforming components) gasification of various types of non-coking coal with certain technological solutions can be no less effective than more complex and expensive high-temperature technologies. There are grounds for believing that the efficiency of gasification with ash removal in a solid state can be further increased by using some of the technological capabilities available in coke production. Keywords: brown coal, non-coking coals, thermochemical processing, gasification, efficiency, degree of carbon conversion, energy carriers, synthesis gas, environmental safety. Corresponding author M.O. Gordienko, е-mail: [email protected]


2021 ◽  
pp. 14-18
Author(s):  
O. A. Dubovikov ◽  
A. V. Sundurov ◽  
I. D. Ustinov

Author(s):  
Shurong Wang ◽  
Qiang Lu ◽  
Huiyan Zhang ◽  
Haoran Yuan ◽  
Haiping Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document