Permeability Prediction Using Machine Learning, Exponential, Multiplicative, and Hybrid Models

2021 ◽  
pp. 195-216
Author(s):  
Simon Katz ◽  
Fred Aminzadeh ◽  
George Chilingar ◽  
M. Lackpour
2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Author(s):  
Hossein Safarzadeh ◽  
Marco Leonesio ◽  
Giacomo Bianchi ◽  
Michele Monno

AbstractThis work proposes a model for suggesting optimal process configuration in plunge centreless grinding operations. Seven different approaches were implemented and compared: first principles model, neural network model with one hidden layer, support vector regression model with polynomial kernel function, Gaussian process regression model and hybrid versions of those three models. The first approach is based on an enhancement of the well-known numerical process simulation of geometrical instability. The model takes into account raw workpiece profile and possible wheel-workpiece loss of contact, which introduces an inherent limitation on the resulting profile waviness. Physical models, because of epistemic errors due to neglected or oversimplified functional relationships, can be too approximated for being considered in industrial applications. Moreover, in deterministic models, uncertainties affecting the various parameters are not explicitly considered. Complexity in centreless grinding models arises from phenomena like contact length dependency on local compliance, contact force and grinding wheel roughness, unpredicted material properties of the grinding wheel and workpiece, precision of the manual setup done by the operator, wheel wear and nature of wheel wear. In order to improve the overall model prediction accuracy and allow automated continuous learning, several machine learning techniques have been investigated: a Bayesian regularized neural network, an SVR model and a GPR model. To exploit the a priori knowledge embedded in physical models, hybrid models are proposed, where neural network, SVR and GPR models are fed by the nominal process parameters enriched with the roundness predicted by the first principle model. Those hybrid models result in an improved prediction capability.


2020 ◽  
Vol 10 (9) ◽  
pp. 3224 ◽  
Author(s):  
Pa Ousman Bojang ◽  
Tao-Chang Yang ◽  
Quoc Bao Pham ◽  
Pao-Shan Yu

Monthly rainfall forecasts can be translated into monthly runoff predictions that could support water resources planning and management activities. Therefore, development of monthly rainfall forecasting models in reservoir watersheds is essential for generating future rainfall amounts as an input to a water-resources-system simulation model to predict water shortage conditions. This research aims to examine the reliability of linking a data preprocessing method (singular spectrum analysis, SSA) with machine learning, least-squares support vector regression (LS-SVR), and random forest (RF), for monthly rainfall forecasting in two reservoir watersheds (Deji and Shihmen reservoir watersheds) located in Taiwan. Merging SSA with LS-SVR and RF, the hybrid models (SSA-LSSVR and SSA-RF) were developed and compared with the standard models (LS-SVR and RF). The proposed models were calibrated and validated using the watersheds’ observed areal monthly rainfalls separated into 70 percent of data for calibration and 30 percent of data for validation. Model performances were evaluated using two accuracy measures, root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE). Results show that the hybrid models could efficiently forecast monthly rainfalls. Nonetheless, the performances of the hybrid models vary in both watersheds which suggests that prior knowledge about the watershed’s hydrological behavior would be helpful to implement the appropriate model. Overall, the hybrid models significantly surpass the standard models for the two studied watersheds, which indicates that the proposed models are a prudent modeling approach that could be employed in the current research regions for monthly rainfall forecasting.


Sign in / Sign up

Export Citation Format

Share Document