The Impact of Cognitive Radio on Green Networking: The Learning‐through‐reinforcement Approach

Author(s):  
Mohammed Salih Bendella ◽  
Badr Benmammar
Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


2014 ◽  
Vol 17 (1) ◽  
pp. 17-31
Author(s):  
Tu Thanh Nguyen ◽  
Khoa Le Dang ◽  
Thu Thi Hong Nguyen ◽  
Phuong Huu Nguyen

In cognitive radio network, how to minimize the impact of secondary user on primary user’s signal plays a very important and complex role. Therefore, spectrum sensing is one of the most essential components of cognitive radio. Therefore, the effect of spectrum sensing algorithms plays a key role to the system’s performance. In this paper, we concentrate on spectrum sensing algorithms in order to find out spectrum hole or while hole for reusing it. Specifically, we will highlight the energy detector algorithm of unknown deterministic signals over fading channels. The numerical results match well with theoretical analysis. The system’s performance of energy detection in AWGN channel is acceptable in case of relatively low signal to noise ratio (SNR). However, the performance of system will be degraded remarkable over fading environments.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 631
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Due to the capability of the effective usage of the radio frequency spectrum, a concept known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum sensing as a core function of the cognitive radio enables secondary users to monitor the frequency band of primary users and its exploitation in periods of availability. In this work, the efficiency of spectrum sensing performed with the energy detection method realized through the square-law combining of the received signals at secondary users has been analyzed. Performance evaluation of the energy detection method was done for the wireless system in which signal transmission is based on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such transmission brings different advantages to wireless communication systems, the impact of noise variations known as noise uncertainty and the inability of selecting an optimal signal level threshold for deciding upon the presence of the primary user signal can compromise the sensing precision of the energy detection method. Since the energy detection may be enhanced by dynamic detection threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell cognitive radio systems. For the evaluation of an energy detection method based on the square-law combining technique, the mathematical expressions of the main performance parameters used for the assessment of spectrum sensing efficiency have been derived. The developed expressions were further assessed by executing the algorithm that enabled the simulation of the energy detection method based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide insights into how different levels of detection threshold adjustments and noise uncertainty affect the probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the transmitting powers of primary user, the number of primary user transmitting and the secondary user receiving antennas, the number of sampling points and the false alarm probabilities improve detection probability. The presented analyses establish the basis for understanding the energy detection operation through the possibility of exploiting the different combinations of operating parameters which can contribute to the improvement of spectrum sensing efficiency of the energy detection method.


Author(s):  
Peter Anker

Cognitive Radio holds an interesting promise for improved utilisation of the radio spectrum. However, there is a considerable degree of uncertainty regarding the potential application of cognitive radio. One of the reasons for this uncertainty is the need for changes in the regulatory regime to allow for more dynamic forms of spectrum access. In addressing the necessary changes in regulations, the regulator should be well aware of the perspective of the entrepreneur. Eventually, it is the entrepreneur who invests in CR technology and thereby realises the goal of improved utilisation of the radio spectrum. This chapter addresses the impact on the business case for cognitive technologies of the regulatory regime and the choices on the fundamental CR technology that regulators will have to make.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1260
Author(s):  
Hyils Sharon Magdalene Antony ◽  
Thulasimani Lakshmanan

Cognitive radio network (CRN) and non-orthogonal multiple-access (NOMA) is a significant system in the 5G wireless communication system. However, the system is an exceptional way for the cognitive users to secure a communication from the interferences in multiple-input multiple-output (MIMO)-NOMA-based cognitive radio network. In this article, a new beamforming technique is proposed to secure an information exchange within the same cells and neighboring cells from all intervened users. The interference is caused by an imperfect spectrum sensing of the secondary users (SUs). The SUs are intended to access the primary channels. At the same time, the primary user also returns to the channel before the SUs access ends. This similar way of accessing the primary channel will cause interference between the users. Thus, we predicted that the impact of interferences would be greatly reduced by the proposed technique, and that the proposed technique would maximize the entire secrecy rate in the 5G-based cognitive radio network. The simulation result provides better evidence for the performance of the proposed technique.


2012 ◽  
Vol 457-458 ◽  
pp. 668-674
Author(s):  
Hong Du ◽  
Zai Xue Wei ◽  
Yu Wang ◽  
Da Cheng Yang

In cognitive radio networks (CRNs), cooperative spectrum sensing technology could overcome the impact from shadow fading and noise uncertainty; however, cognitive radio users with different signal-to-noise ratios (SNRs) would cause the unreliable detection performance when making a decision in the information fusion center. Therefore, a novel cooperative spectrum sensing scheme which focus on the reliability of cognitive radio users is presented. The proposed approach does not select all of the cognitive radio users but the ones whose SNR is beyond the average SNR of the whole users for high reliability. Moreover, the detection and throughput performance is investigated. Simulation results illustrate this approach could enhances the detection probability by comparing to the conventional cooperative algorithm. Besides, it also could lead to higher throughput within a short spectrum sensing time.


Sign in / Sign up

Export Citation Format

Share Document