FLOAT GLASS FLATNESS: PROCESS CONSEQUENCES, AND HOW TO IMPROVE CONTROL

Author(s):  
Joseph LaPlante
Keyword(s):  
Author(s):  
H Anıl Salman ◽  
R Orhan Yıldırım

In this work, the resistance and deformation characteristics of a brittle material against rain erosion are examined by using the non-linear, explicit software LS-DYNA. The water jet with varying speeds impinges at 90° on silica float glass plates with different thicknesses. In the simulations, the Arbitrary Lagrangian Eulerian method is used for modelling of the water. In order to analyse the deformations on the brittle material Johnson–Holmquist–Ceramics (JH-2) is used as the material model. Minimum plate thickness (for constant water jet speed) and maximum water speed (for constant plate thickness), which do not cause any damage to the target, are determined depending on the geometry, boundary conditions and assumed failure strain value for erosion. The results are compared with the water-hammer pressure.


2008 ◽  
Vol 39-40 ◽  
pp. 607-612
Author(s):  
Bernhard Fleischmann

A part of a soldier block, placed in a float glass furnace near the hot spot area, was investigated to learn about the changes in the microstructure during the production of the block, during the use for glass melting and after the shut down of the furnace and the cooling of the block. Beside the three phases after the production (baddeleyite, corundum, vitreous phase) during use as a soldier block mullite and secondary corundum as well as secondary zirconia may occure. Cooling down the used block after the furnace campaign the beginning of the crystallisation of feldspars may be seen.


Optik ◽  
2020 ◽  
Vol 220 ◽  
pp. 164985
Author(s):  
Chunmeng Chen ◽  
Yanqing Wang ◽  
Yu Huang ◽  
Youmin Rong

1994 ◽  
Vol 177 ◽  
pp. 381-388 ◽  
Author(s):  
Peter B. McGinnis ◽  
James E. Shelby
Keyword(s):  

2002 ◽  
Vol 749 ◽  
Author(s):  
Vincent Barrioz ◽  
Stuart J. C. Irvine ◽  
D. Paul

ABSTRACTZnS is a material of choice in the optical coating industry for its optical properties and broad transparency range. One of the drawbacks of ZnS is that it develops high compressive intrinsic stress resulting in large residual stress in the deposited layer. This paper concentrates on the evolution of residual stress reduction in ZnS single layers, depending upon their deposition rate or the substrate temperature during deposition (i.e. 22 °C and 133 °C). The substrate preparation is addressed for consideration of layer adhesion. Residual stress of up to − 550 MPa has been observed in amorphous/poor polycrystalline ZnS layers, deposited on CMX and Float glass type substrates, by electron beam evaporation at 22 °C, with a surface roughness between 0.4 and 0.8 nm. At 133 °C, the layer had a surface roughness of 1 nm, the residual stress in the layer decreased to − 150 MPa, developing a wurtzite structure with a (002) preferred orientation. In situ stress measurements, using a novel optical approach with a laser-fibre system, were carried out to identify the various sources of stress. A description of this novel in situ stress monitor and its advantages are outlined. The residual stress values were supported by two ex situ stress techniques. The surface morphology analysis of the ZnS layers was carried out using an atomic force microscope (AFM), and showed that stress reduced layers actually gave rougher surfaces.


Sign in / Sign up

Export Citation Format

Share Document