Test Methods for Fibre/Matrix Adhesion in Cellulose Fibre‐Reinforced Thermoplastic Composite Materials: A Critical Review

2021 ◽  
pp. 69-130
Author(s):  
J. Müssig ◽  
N. Graupner
2020 ◽  
Vol 8 (2) ◽  
pp. 68-129
Author(s):  
J. Müssig ◽  
N. Graupner

Due to the increasing discussion about sustainable and CO2-reduced materials, the demand for cellulose-based fibres as a reinforcing component in thermoplastic composites has increased considerably. Knowledge about the possibilities of modifying fibres for improved adhesion to the plastic matrix is essential in this context. The fibre/matrix adhesion in cellulose fibre-reinforced polymers is of considerable importance for the design of composite materials. Unfortunately, there are no standards for many essential methods to determine fibre/matrix adhesion. In this review article, various methods for measuring the interfacial shear strength between fibres and matrix, as an indirect characterisation of adhesion, are presented. Additionally, a brief overview of different methods for surface modification of cellulose fibres to improve the adhesion to a thermoplastic matrix is given. This review focuses on the fact that the parameters for the production of test specimens as well as the test method itself can vary considerably from study to study. Because of this, the comparison of data from different publications is not always possible. Therefore, in this article, the main influencing factors and differences in the methods are presented and discussed. Based on a systematic review and a clear description and discussion of the methods, the reader is given a broad basis for a better understanding of characteristic values for fibre/matrix adhesion.


Cellulose ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. 2451-2471 ◽  
Author(s):  
Thomas Bahners ◽  
Milan Kelch ◽  
Beate Gebert ◽  
Xochitli L. Osorio Barajas ◽  
Torsten C. Schmidt ◽  
...  

1992 ◽  
Vol 269 ◽  
Author(s):  
Mitchell L. Jackson ◽  
Curtis H. Stern

ABSTRACTMixture models were studied in an effort to predict the microwave frequency permittivities of unidirectional-fiber-reinforced thermoplastic-matrix composite materials as a function of fiber volume fraction, fiber orientation relative to the electric field, and temperature. The permittivities of the constituent fiber and plastic materials were measured using a resonant cavity perturbation technique at 9.4 GHz and at 2.45 GHz. The permittivities of the composite specimens were measured using a reflection cavity technique at 9.4 GHz and at 2.45 GHz. Simple “rule-of-mixtures” models that use the fiber and plastic permittivities have been found to approximate the complex dielectric properties of the composite for varied fiber volume fractions. The permittivities of oriented composites were modeled using a tensor rotation procedure. Composite permittivities were modeled with temperature up to the glass transition temperature of the thermoplastic matrix.


Sign in / Sign up

Export Citation Format

Share Document